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Abstract

High-fidelity video-to-audio synthesis is often computa-
tionally expensive, as state-of-the-art diffusion models re-
quire numerous iterative steps that impede real-time appli-
cations. To overcome this limitation, we introduce velocity
consistency models built upon the Flow Matching frame-
work, designed explicitly for few-step inference. Our core
contribution lies in a novel training objective that learns
a ground-truth average velocity field. This is achieved by
supervising the model with a target that linearly interpo-
lates its own velocity predictions at lower noise levels with
the instantaneous velocity field given by the Flow Match-
ing framework. We train our models from scratch, elimi-
nating the need for a diffusion pre-training process. Cru-
cially, we apply Classifier-Free Guidance (CFG) to our
models during training, which substantially improves au-
dio quality for few-step generation. Experimental results
demonstrate that our model significantly reduces inference
steps while achieving competitive generation fidelity com-
pared with diffusion or Flow Matching models, bridging
the critical gap between quality and efficiency for real-time
video-to-audio synthesis. The codes and audio samples are
available at https://luotianze666.github.io/
files/SoundVCM. zip.

1. Introduction

Video-to-audio generation aims to synthesize semantically
aligned and temporally synchronized audios from silent
video clips. The inclusion of synchronized audio is crucial
for enhancing the immersive experience of video, which has
spurred significant research to advance video-to-audio gen-
eration performance [4, 38, 42, 45-47]. This work centers
on foley audio generation, where we train models to synthe-

Xingchen Miao
Tsinghua University

miuxc22@mails.tsinghua.edu.cn

Yang Zhang
MIT-IBM Watson Al Lab

yang.zhang2@ibm.com

Chuang Gan

University of Massachusetts at Amherst

chuangg@cs.umass.edu

Multimodal

PRETIEY fucio
Video-to-audio .
Models “ i‘ I“ m ‘“l ““ 4:

Velocity Consistency Models

vp(@e,t) = v(1,t) up(@est,8) > A v(@it) + (1= A) - up- (21,1, 8)

Many steps, slow inference Fewer steps, fast inference

Figure 1. As a multimodal video-to-audio model, SoundVCM
takes visual input and optional text to predict audio aligned with
both modalities. Rather than optimizing instantaneous velocity,
our model is supervised with a linear interpolation of both instan-
taneous and average velocities. See Sec. 3.2 for details.

size sound effects and ambient audio based on visual events,
rather than background music or speech.

The advancement of deep generative models has
led to various approaches for video-to-audio generation.
Early explorations with Generative Adversarial Networks
(GANGs) [3, 13] aimed to generate synchronized audio, but
these methods were often hampered by low perceptual qual-
ity and limited practical applicability. Subsequent works
employed transformers for autoregressive generation [16,
39, 44], which improved generation quality but were con-
strained by high latency and still left room for advancement.
More recently, latent diffusion models have emerged as the
predominant paradigm for high-quality video-to-audio syn-
thesis [4, 29, 38, 42, 46, 47]. The adoption of architectures
like the Multimodal Diffusion Transformer (MMDIT) [6]
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and multimodal joint training has significantly boosted au-
dio quality and temporal synchronization.

Despite their success, latent diffusion models introduce
efficiency issues due to the iterative denoising process.
This problem is compounded by Classifier-Free Guidance
(CFG) [15], which doubles the computational cost at in-
ference. To address this, Frieren [47] employs rectified
flow and one-step distillation, while MF-MJT [50] uses the
Meanflow [11] training objective for distillation-free one-
step generation. However, their few-step generation qual-
ity still lags considerably behind that of conventional multi-
step diffusion models, creating a notable performance gap.

In this work, we introduce SoundVCM, a novel veloc-
ity consistency model for few-step, high-fidelity video-to-
audio generation. Our model learns the ground-truth av-
erage velocity field from the marginal velocity field within
the Flow Matching framework, using a novel training tar-
get. This target, a linear interpolation between the marginal
velocity and the model’s prediction at lower noise, is com-
puted via simple forward propagation. This design advan-
tageously avoids Jacobian-Vector Products (JVPs) compu-
tations that are inefficient in frameworks like PyTorch and
required by continuous Consistency Models [27] and Mean-
flow Models [ 1]. Furthermore, we integrate Classifier-Free
Guidance (CFQG) directly into the training of SoundVCM.
This enhances sample quality while improving inference ef-
ficiency by eliminating duplicated runtime computations.
On the VGGSound dataset [2], experiments demonstrate
that SoundVCM, trained from scratch, generates audio of
competitive quality with drastically fewer inference steps
than traditional diffusion and Flow Matching models, un-
derscoring our method’s efficacy and efficiency.

2. Related Work

2.1. Video-to-Audio Generation

The challenge of generating synchronized audio from video
has been approached from several perspectives. Early at-
tempts sought to leverage the capabilities of large pre-
trained text-to-audio (TTA) models as a foundation. Repre-
sentative works in this category include T2AV [32], which
leveraged an audio-visual ControlNet [52] to steer a base
TTA model with visual information. FoleyCrafter [53]
adopted a distinct strategy, feeding both visual and tex-
tual embeddings into its UNet generator and using cross-
attention mechanisms alongside temporal controllers to
direct the synthesis. @A more direct and fruitful line
of research focused on training dedicated video-to-audio
models from scratch. This included foundational work
with GANs [3, 13], autoregressive Transformers generat-
ing spectrograms [16, 39], and a significant advancement
with latent diffusion models like Diff-Foley [29], which im-
proved quality through contrastive pre-training. However,

both of these early paradigms were ultimately constrained
by the limited scale of available paired audio-video datasets,
such as VGGSound [2], highlighting the need for a more ro-
bust and data-efficient architectural approach.

These limitations catalyzed the development of multi-
modal architectures, designed for a more profound and scal-
able fusion of information. This paradigm shift involves
creating unified models that can jointly process different
data types, representing the true solution path for high-
quality video-to-audio synthesis. Efforts in this direction
include developing sophisticated strategies to map features
across modalities, such as projecting visual CLIP embed-
dings into an audio embedding space [45] or using compre-
hensive aligners like ImageBind and Seeing&Hearing [14,
49]. Further advancements have focused on specific chal-
lenges within this multimodal framework, such as enhanc-
ing generation efficiency with rectified flow matching [47]
or capturing fine-grained motion details for superior tem-
poral alignment [44]. The current state-of-the-art is rep-
resented by MMAudio [4], which pioneers a joint training
strategy on both video-audio and text-audio data. This ap-
proach effectively expands the available training data and
improves the model’s cross-modal understanding, setting a
new benchmark for generation quality. Following this ar-
chitectural lineage, recent works such as HunyuanVideo-
Foley [38] and Kling-Foley [46] have incorporated their
own refinements upon this multimodal diffusion frame-
work, also achieving highly competitive results and further
validating this research direction.

2.2. Few-Step Generative Models

The pursuit of accelerated generation has made few-step
sampling a central focus of modern research. The first ap-
proach involves distillation, where large, pre-trained multi-
step models are compressed into more efficient, few-step
versions [9, 30, 35, 37, 51, 55]. The second strategy cen-
ters on training fast samplers from the ground up without
relying on a teacher model, a path notably exemplified by
the family of consistency training methods (CMs, iCT, ECT,
sCT) [10, 27, 40, 41].

Consistency Models (CMs) function by directly map-
ping corrupted inputs back to their original, clean state, en-
abling generation in one or very few steps [41]. Initially
prominent in distillation frameworks [10, 28], CMs were
later found trainable from scratch using consistency training
techniques [40]. Subsequent improvements built upon this
foundation: iCT streamlined the training process with more
robust objective functions and teacher-free learning [40],
while ECT bridged CMs with diffusion models through a
continuous-time ordinary differential equation (ODE) per-
spective [10]. More recently, the sCT framework has en-
hanced the stability of continuous-time training, allowing
for consistency models at the billion-parameter scale [27].



Recent research has advanced to handle flexible transi-
tions between arbitrary points in time. Shortcut models,
for example, use shared weights conditioned on noise lev-
els and step sizes to accommodate both few- and multi-
step sampling [7]. MeanFlow contributes an analysis based
on interval-averaged velocities to clarify the relationship
between averaged and instantaneous changes [11]. To
mitigate variance and bypass multi-stage training, IMM
matches moments across transitions within a single objec-
tive [54]. Stability and generalization have been improved
by Flow-Anchored CMs, which regularize the learning pro-
cess with a flow-matching anchor [33]. In the distillation
domain, Align Your Flow merges CM and Flow Matching
(FM) into continuous-time flow maps that perform well re-
gardless of step count, further refined by autoguidance and
adversarial tuning [34]. Finally, Transition Models offer a
new perspective by reformulating generation based on ex-
act finite-interval dynamics, creating a unified framework
where quality consistently improves with an increased step
budget [48].

3. Method

3.1. Flow Matching

We firstly outline the fundamentals of Flow Matching. The
objective of Flow Matching is to learn a velocity field that
maps a simple prior distribution to a complex data distri-
bution. We designate the data distribution as p(zo) and the
prior, a standard Gaussian distribution N'(0, I), as p(x1).
A linear interpolation between a data sample x( and a
noise sample 1 defines the trajectory: x; = tx1+(1—¢)zo,
where 2; € R™ and t € [0, 1]. Associated with this path is
the marginal velocity field, formulated as the conditional
expectation of the vector field pointing from zq to z;:

U(xta t) = Ep(mo,wl\zt)[xl - xO]- (1)

The Flow Matching framework allows for the generation of
new samples by first drawing a sample x; from the prior dis-
tribution p(x1). Subsequently, one solves the initial value
problem (IVP) for the following velocity ordinary differen-
tial equation (ODE) from ¢ = 1 down to ¢ = 0:

dX(t)
dt

To build a generative model, we can approximate the
marginal velocity field with a neural network vy, parameter-
ized by 6. The network is trained by minimizing the mean
squared error between the predicted and true velocity fields:

Lem(6) = B, [lvo (w0, t) —v(ae, )] 3)

However, training with this objective is not feasible because
the ground-truth velocity field v(z,t) is a conditional ex-
pectation. To address this, the Conditional Flow Matching

=o(X(1),t), X(1)=ua1. )

(CFM) framework gives a tractable loss function [24, 25]:
Lerm(0) = Etwg oy, [[v6(2e 1) — (21— 20)|*. (@)

Optimizing Lcpy is equivalent to optimizing Lgy. This loss
is practical as it only requires sampling pairs of data and
noise to define the regression targets for the neural network.

3.2. Velocity Consistency Models

Following previous works [12, 23, 33, 50], we define the
average velocity field based on the marginal velocity field
in the Flow Matching framework as follows:

1 S
u(ztatﬂs) = s—t / U(ITvT) dTa (5)
t

where x; e R*, 0 < s <t <1.

When t = s, the average velocity field equals the
marginal velocity field, i.e., u(xs,t,t) = v(zy,t). By ap-
proximating the ground-truth average velocity function with
a neural network ug(x,t,s), we can avoid numerically
solving the velocity ODE and achieve few-step or one-step
data generation. We now consider how to construct effec-
tive training objectives for our model.

By the additive property of integrals, we have:

w(xe, t,8)(s—t) = u(z, t, )(1—1t)+ul(zy, 1, s)(s=1), (6)

where z; = x¢ + u(zy, t, 1) (I —t)and 0 < s <l <t < 1.

Note that when [ is sufficiently close to ¢, the average
velocity field approximates the marginal velocity field, i.e.,
u(zy, t,1) = v(wy,t) + O(I — t), assuming the average ve-
locity field is continuously differentiable. We thus obtain
the following approximation for u(x4, t, s):

w(we, t,8) = (g, t) + (1 — Nu(zy, 1, s)

- @)
where A = l—i € [0,1].

+O((I —1t)N),

This indicates that the average velocity field can be approxi-
mated by a linear combination of the marginal velocity field
and a nearby average velocity field, with the approximation
error becoming negligible when [ is sufficiently close to t.
In addition, when [ is close to ¢, 2; can be approximated as:

xp = xp +u(xe, 6,01 —1t)

2 (®)
=xr+o(z,t)(I—t) + Ol —1)7).

Assuming the marginal velocity field is continuously dif-
ferentiable, we combine Eq. (7) and Eq. (8) to obtain:

u(wy, t,8) = M(xg, t) + (1 — Nu(zy

folen )-8, s) + O — DL — 1)+ ).



This property directly enables us to construct a training
objective for our model wg (x4, t, s):

w(MSE
Lvem =Ei 15,2, (T) . Hug(azt,t, s)
(10)

— 0@ t) + (1= Nug- (1,1, 9)]|| ]

where &; = xy + v(x,t)(I — t), D is the data dimen-
sion, #~ denotes the stop-gradient operation, MSE repre-
sents the raw mean square error, and w(MSE) is an adap-
tive loss coefficient to enhance model performance. When
training from scratch, the marginal velocity field v(xy,t) =
Ep(wo,a1]a:) [T1 — To] is intractable; we therefore replace it
with the random term z; — x¢ following the Flow Matching
framework.

For the adaptive loss coefficient, following previous
works [10, 11, 40], we employ:

1

w(MSE) = MEET

1D
to improve loss robustness, where p controls the robustness
level and € is a small smoothing factor. When p > 0, this
coefficient downscales gradients for data points with larger
mean square errors within a batch. Consistent with prior
work [10, 12, 23], this adaptive loss coefficient improves
few-step generation quality in our model.

Note that the above loss function is defined for s < ¢
since A = g For t = s, since the average velocity field
equals the marginal velocity field, we set A = 1 to reduce
our loss function to the flow matching loss. We observe
that including a certain proportion of data points with t = s
improves performance, as the training target is more stable
compared to the s < t case, thereby accelerating model
convergence. Besides, as shown in next section, including
data points with ¢ = s is also important to apply CFG to our
model. For more details related to our loss function, please
refer to supplementary materials.

Regarding the sampling of time variables ¢, [, s dur-
ing training: for the fixed ratio of data points with ¢ =
s, we sample ¢ directly from a logit-normal distribution,
sigmoid(N (u, 0)). For the s < t case, we first draw two
samples from the same logit-normal distribution, then as-
sign the smaller to s and the larger to ¢. Here, s is clamped
to ensure s < t — 10™%, avoiding excessively close values.
Following experiments in Consistency Models [10, 40], we
adopt an exponential decay schedule for the interval length
in the consistency loss. We also determine A using an expo-
nential schedule:

A Snow/ Smtul
A = Ainit (“) : (12)
Ainit

where Spoy and Sy, denote the current and total training

steps, respectively. This is equivalent to determining [ as:

A Snow/slolal
I=t+(s—1t) A (Ad) . (13)
init

Similar to s, [ is clamped to ensure [ < t—10~4, since when
l is too close to t, the difference between the two average
velocities may be too small for effective learning.

3.3. Classifier-Free Guidance

Classifier-Free Guidance (CFG) [15] has become a standard
technique for enhancing the fidelity of conditional genera-
tion in diffusion models. During training, the conditioning
information is randomly discarded with a fixed probability,
allowing the model to jointly learn both conditional and un-
conditional distributions. At inference, the conditional and
unconditional predictions are linearly combined to amplify
the guidance signal, thereby improving output quality.

A computational drawback of this approach is the dou-
bled cost during inference, as the model must compute both
conditional and unconditional predictions. In contrast, we
integrate CFG into the training phase of our model, thereby
avoiding extra inference-time computation. Specifically, in
the Flow Matching framework, the conditional marginal ve-
locity field for conditional generation is defined as:

V(x| €) = Ep(zg,z1 |20,0) [T1 — To]. (14)

By linearly combining this with the unconditional marginal
velocity field, we obtain the guided marginal velocity field:

verG (T, By ¢) = wo(xe, t | ¢) + (1 — w)v(ze, t).  (15)

We want the model to learn the average of the ground-truth
guided marginal velocity field. However, direct estimation
of the unconditional velocity field is intractable. To address
this, the unconditional field is learned by replacing the con-
dition ¢ with an empty condition ¢ with a probability of 0.1,
and by setting ¢ = s for a subset of the data during training.
For data points assigned ¢ and s < t, we compute the loss
by feeding ¢ to the network and replacing the velocity term
v(zy,t) in Eq. (10) with 21 — x¢, following unconditional
Flow Matching framework.

For data points with a valid condition ¢, we first predict
the unconditional velocity field vyncona USIing ug(zy, t,t, @).
We then compute the guided loss by feeding c to the net-
work and replacing v(z¢, t) in Eq. (10) with w(z1 — x9) +
(1 — w)vyncond, Where w is the CFG scale.

The term w(x1 —2o)+(1—w)Vuncona can suffer from high
variance due to the scaling factor w, which impairs training
convergence and final performance. To mitigate this, we
leverage the model’s ability to directly predict the guided
velocity field vgyigea Using wg (¢, t, ¢, ¢), a prediction with



Algorithm 1 SoundVCM Guided Loss Computation

1: Input: Neural network uy, audio latent x, visual and
textual conditions ¢, adaptive loss coefficient (p, €), Ve-
locity mix ratio m, Target combination coefficient A

2: Sample ¢, s according to Sec. 3.2, ¢ ~ N(0, 1)

e (1—t) - z+t-ev+e—=x

4! Vuncond < Ug- (l‘t, t,t, ¢)7 Vguided < Ug— (xh t,t, C)
5! Umix = m(wvt + (1 - w)vuncond) + (1 - m)vguided
6: l:t+(87t)>\,i'l :xt+(l—t)vmix

7 Us = up (T, t, 8, ¢), ups = ug— (&1, 1,8, ¢)

8: MSE = 5 |lurs — (Avmix + (1 — w3

9: w = stop-gradient ( m)

10: Loss =w - MSE

—_
—_

: Output: Loss

Algorithm 2 SoundVCM Inference

1: Input: Neural network ugy, visual and textual condi-
tions ¢, sampling steps V.

2: Sample initial noise: z ~ N(0, 1)
3:fori=N—-1to0do ‘

4: r=x— % up(z, T, L ¢
5: end for

6: Output: x

much lower variance than the random term. We then intro-
duce a mixed velocity

Umix = m(w(zl - IO) + (1 - w)vuncond) + (1 - m)vguided
(16)
to replace v(z4, t) in Eq. (10). Since the variance primarily
stems from the stochastic term x; — zg, a small velocity
mix ratio m (0 < m < 1) effectively dampens the overall
variance by incorporating the stable vgyigeq prediction.

3.4. Algorithm

The preceding sections have detailed our velocity consis-
tency model’s principle and its training-time CFG applica-
tion. To crystallize these concepts, we provide the pseudo-
code for the guided loss computation and inference process
below. For complete PyTorch implementation, please refer
to our codes in supplementary materials.

3.5. Model Architecture

Figure 2 presents the overall framework of SoundVCM, a
multimodal generative model built upon an enhanced Flux-
style transformer. The model predicts the mean velocity
on the space of latent variables, guided by video and text
conditions as well as timestep embeddings. Here we outline
its main components and explain our design choices.

¢ s | Video | Text Audio
. Synchformer CLIP CLIP
Embedding ] encoder ‘ encoder ‘ encoder spectrogram
! { !
Sync Visual Text
[ feature ] ‘ features ‘ features Latents
Linear [ Linear } [ Linear ] [ Linear ]
avg. on time Upsample
Fi ligned
v v v sync feature .
MMDIT
Global
condition
Frame-aligned
condition
t s <
DiT

adalLN

Average velocity ug

Figure 2. Model architecture, based on MM Audio framework. We
modified the time embedding to support two-time conditioning.
See the supplementary material for details.

3.5.1. Multimodal Transformer

Our model architecture follows the multimodal framework
proposed in MMAudio [4], which unifies text, audio, and
video streams within a multimodal transformer backbone.
The design aims to capture fine-grained interactions across
modalities while maintaining temporal and semantic coher-
ence, crucial for foley generation. All modalities are rep-
resented as 1D token sequences, and they are projected
to a unified hidden dimension before being processed by
the transformer. Built upon the MMDIT structure [6],
the model alternates between multimodal attention blocks,
where different modalities interact through joint attention,
and audio-only DiT layers that refine acoustic representa-
tions. The audio latent is then processed through adaptive
layer normalization (adaLLN) and Convld to predict the la-
tent space’s average velocity uy between two timesteps ¢
and s. Visual and textual representations are pooled and
combined with timestep embeddings to construct a global
context vector. This vector provides global conditioning
through adalLN in each MMDIT block, modulating each
block via learned scale and bias transformations, which en-
sures shared global control across the entire sequence.
During inference, visual and textual modalities are
passed through encoded conditions (if available) or a fixed
empty vector (if missing), naturally adapting to any visual-
textual combination for audio prediction. The audio latent is
initialized as noise from a N'(0, I) distribution, rather than
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Figure 3. Mel-spectrogram comparison of different models on a VGGSound test clip. Frieren, MF-MJT, and SoundVCM use 1-NFE
inference, whereas MMAudio uses 25x2 NFEs. Among all one-step models, ours achieves the best audio-visual alignment and produces
semantically coherent audio, remaining competitive with the multi-step MM Audio model.

derived from data through a VAE.
3.5.2. Two-time embedding

In the MMAudio architecture, the conditioning mechanism
employs a single-time sinusoidal embedding to encode tem-
poral information. To support average velocity expres-
sion. we extend this by introducing a two-time embedding
scheme. This method explicitly incorporates both the cur-
rent time ¢ and the relative offset (s — t), where s is the next
time step. This formulation allows the model to capture
transitions between successive time points, providing richer
temporal cues for smoother interpolation and improved con-
sistency across latent transitions. The embedding technique
follows the approach outlined in MeanFlow [12]. This
method naturally degenerates to predicting instantaneous
velocities when s = ¢, in which case the second embedding
deals with a fixed offset 0.

4. Experiments
4.1. Datasets

For training, we use two types of datasets to support our
multimodal model: video-text-audio and text-audio. During
training, we balance the contribution of both types by ad-
justing their sampling weights, aiming for a roughly equal
amount of exposure to each modality. The two types of
datasets are randomly mixed, and for the text-audio sam-

ples the video features are set to a fixed empty vector. Be-
fore training, we preprocess the features of video, text, and
audio to reduce I/O overhead on training. Our dataset setup
follows MMAudio [4] to ensure a fair comparison. Below
are the datasets used for training and evaluation:
VGGSound [2] The only video-text-audio dataset used,
containing ~200,000 10s video clips. Each clip is paired
with a text label for classification, which we directly use as
the text input [4, 18, 26]. We use only the first 8 s of each
video for both training and evaluation.

AudioCaps [20] A text-audio dataset containing ~50,000
10s audios with manually annotated text descriptions. We
use only the first 8 s of each audio. While a 2.0 version with
~100,000 clips exists, we restrict our use to the ~50,000
clips from the original version for consistency.

Clotho [5] A text-audio dataset with ~4,000 audios of
varying lengths. We split each audio into several non-
overlapping 8s clips. Each audio has five human-annotated
text descriptions, meaning five text-audio pairs per clip.
WavCaps [31] A collection of text-audio datasets weakly
labeled using ChatGPT. Data sources include FreeSound,
BBC Sound Effects, AudioSet SL, and SoundBible; we
only use the first three, following MMAudio.

4.2. Evaluation Metrics

We evaluate our model across four dimensions: distribution
matching, audio quality, semantic alignment, and tempo-



Table 1. Video-to-audio evaluation results on VGGSound [2] test set. At NFE column, x2 means the model adopts Classifier-Free
Guidance during inference, so the total function evaluation time is doubled. #: Evaluated using official code and checkpoints. Frieren
includes three variants: no reflow, reflow and reflow+distill. Reflow supports few-step inference, while only reflow+distill can be evaluate
in 1-NFE. ©: Results reported by MF-MIJT [50]. As no public code is available, we list only the metrics provided in the paper. &:
These models does not support text inputs during inference. {>: Results reported by MMAudio [4]. We include them directly because our

evaluation strictly follows the same av-benchmark protocol.

Model NFE | Params FDyGg | FDpanns | FDpasst | KLpanns | KLpasst | ISpanns T IB 1 DeSync |
ReWaS® [18] 2002 619M 1.79  17.54 14138  2.87 2.82 851 14.82 1.062
V2A-Mapper®< [45] 200%2 229M 0.84 840 8457  2.69 256 1247 2258 1.225
Seeing&Hearing® [49]  30x2 415M 540 2458  219.01 226 230 858 33.99 1204
V-AURA®* [44] - 695M 288  14.80 21850 242 207 1008 27.64 0.654
VATT® [1] 16x2 415M 277 1063  131.88 148 141 1190 2500 1.195
FoleyCrafter® [53] 25x2 1.22B 251 1624  140.09  2.30 223 1568 25.68 1.225
Frieren®*® (no reflow) [47] 25x2 159M 134 1145  106.10  2.73 286 1225 2278 0.851
MMAudio® [4] 25%2 157M 079 522 70.19 1.65 159  14.44 29.13 0.483
ME-MIT® [50] 25 157M 1.3 587 - 1.59 - 16.55 2822 0.57
Friecren®® (reflow+distill) 1 159M 1.83 1648 14299  2.54 264 851 2192 0.841
Frieren®*® (reflow) 4 159M 223 1440 14209 259 267 798 22.15 0.833
ME-MJT® 1 157M  1.46 11.14 - 1.87 - 939 21.78 0.86
1 088 595  78.90 1.78 176 1254 2531 0.632
SoundVCM (ours) 4 M ga4 508 6975 1.66 158 13.62 2732 0.553

ral alignment. These metrics together assess both the per-
ceptual quality of the generated audio and its correspon-
dence to the input video and text. All evaluations follow the
av-benchmark implementation provided by MMAudio
to ensure full comparability with the baseline.
Distribution Matching This dimension measures how
closely the generated audio matches the feature distribu-
tion of the ground truth. We report two standard dis-
tances: Fréchet Distance (FD) and Kullback-Leibler (KL)
divergence. FD is computed using embeddings from VG-
Gish [8], PANNSs [21], and PaSST [22], while KL diver-
gence is computed using PANNs and PaSST classifiers.
Audio Quality The quality of generated audio is evaluated
using the Inception Score (IS) [36] with a PANNS classifier.
Semantic Alignment To evaluate semantic correspondence
between video and audio, we use ImageBind [14] to extract
their features. The cosine similarity forms the IB-score.
Temporal Alignment Temporal synchrony between audio
and video is quantified using the DeSync score predicted by
the Synchformer [17] module, which estimates the degree
of misalignment between the two modalities.

4.3. Training Settings

The model is optimized with AdamW using a peak learn-
ing rate of 1 x 10~ and a linear warm-up of 1,000 steps.
The learning rate is decayed to 1 x 10~ at 240k steps and
further to 1 x 1076 at 270k steps, with training proceed-
ing for a total of 300k steps under a global batch size of

512. We use 51 = 0.9, B2 = 0.95, and a weight decay
of 1 x 10~%. Model parameters are additionally stabilized
using Post-Hoc EMA [19] with g, = 0.05. Training is
performed in mixed precision (b£16) on 4 H100 GPUs and
takes around 30 hours of wall-clock time.

In each training iteration, the batch is divided between
velocity learning (¢ = s) and consistency learning (s < t)
with a ratio of » = 0.75. The logit-normal distribution is set
to sigmoid (N (—0.4, 1)) to sample time points. On-training
classifier-free guidance is applied only for ¢ € [0, 0.8], with
a guidance scale of w = 4 and a null-conditioning proba-
bility of 0.1. The velocity mix ratio is set to m = 0.75. We
employ an adaptive loss scaling strategy with parameters
p = 1 and € = 0.01. Finally, we use a simple time-decay
schedule with iy = 1/10 and Aepg = 1/500.

4.4. Video-to-Audio Results

Tab. 1 compares our model’s video-to-audio generation re-
sults with other few-step and multi-step models on the VG-
GSound [2] test set, which contains around 15K video-
audio pairs. Among few-step models, both MF-MIJT [50]
and SoundVCM adopts a MMAudio-like network. While
ME-MIT combines it with MeanFlow [12] training scheme,
SoundVCM performs velocity consistency model training.

Across all evaluation metrics, SoundVCM delivers con-
sistently strong performance. Our model achieves the best
Fréchet Distance (FD) among all compared methods, out-
performing not only all few-step models but also multi-



Table 2. Ablation studies.

Variant FDygc |  FDpanns +  FDpasst 4 KLpanns 4 KLpasst 4 ISpanns T IB T DeSync |
w=1 1.63 12.40 102.63 2.05 2.01 7.93 21.02 0.807
w=2 0.98 7.93 84.69 1.84 1.79 10.30 2391 0.687
w=3 0.84 6.49 80.13 1.79 1.75 11.60 25.00 0.641
w=4 0.86 6.08 79.35 1.79 1.75 12.34 25.31 0.633
m = 0.25 0.88 5.95 78.90 1.78 1.76 12.54 25.31 0.632
m = 0.5 0.88 6.36 82.27 1.81 1.78 11.99 25.00 0.650
m = 0.75 0.93 6.46 85.72 1.79 1.75 11.59 24.80 0.632
m=1 0.96 6.78 89.15 1.82 1.78 10.92 24.37 0.644
r=20 9.51 30.76 279.95 2.82 2.85 3.69 12.20 0.960
r=0.25 0.94 8.38 87.41 1.94 1.91 10.78 22.61 0.720
r=20.5 0.89 6.62 82.93 1.83 1.80 11.96 24.46 0.659
r=0.75 0.88 5.95 78.90 1.78 1.76 12.54 25.31 0.632
p=20 5.36 20.03 204.34 2.16 2.08 5.48 17.80 0.683
p=20.5 1.00 6.60 86.06 1.79 1.76 10.99 24.93 0.609
p=1 0.88 5.95 78.90 1.78 1.76 12.54 25.31 0.632
p=1.5 0.93 8.57 90.30 1.89 1.88 10.75 23.33 0.719
Aend = 1/250 0.87 6.09 79.36 1.79 1.76 12.34 25.21 0.633
Aend = 1/500 0.88 5.95 78.90 1.78 1.76 12.54 25.31 0.632
Aend = 1/1000 0.86 6.18 80.26 1.78 1.74 12.36 25.31 0.635

step diffusion baselines. Our model also performs the best
among all few-step models on KL divergence. In terms of
Inception Score (IS), SoundVCM shows a clear advantage
within the few-step category. Its performance surpasses sev-
eral multi-step models. On the IB metric, SoundVCM sub-
stantially outperforms all few-step models and most multi-
step baselines. Note that Seeing&Hearing [49] explicitly
optimizes the IB objective during training, which explains
its unusually high IB scores. For temporal synchronization,
SoundVCM behaves similarly to MMAudio in leveraging
sync features during training. As a result, SoundVCM ob-
tains stronger sync performance than most baselines. Al-
though MF-MIJT also incorporates MMAudio’s sync fea-
tures, our approach captures noticeably more temporal
structure, leading to better alignment.

4.5. Ablation Study

We conduct extensive ablation studies to analyze the impact
of key hyperparameters on the performance of SoundVCM,
and the results are summarized in Table 2.

CFG Scale w. Consistent with observations in diffusion
models, the Classifier-Free Guidance (CFG) scale w signif-
icantly influences the model’s output quality. Our exper-
iments reveal that performance progressively improves as
the CFG scale is increased, indicating that a stronger guid-
ance signal is beneficial within the tested range.

Velocity Mix Ratio m. The velocity mix ratio m balances

deterministic and stochastic elements in the velocity field.
Our experimental results indicate that a smaller value of m
consistently enhances performance. This can be attributed
to the suppression of the stochastic term, which in turn re-
duces randomness and accelerates model convergence.

t = s Data Ratio r. We investigate the effect of incor-
porating standard flow matching data points (where ¢ = s)
during training. The inclusion of this data notably improves
both training stability and overall model performance. The
optimal results are achieved with a high ratio of r = 75%,
highlighting the importance of flow matching loss.
Adaptive Loss Scale p. The choice of the adaptive loss
scale p determines the robustness of the loss function. We
found that a moderately robust loss yields the best results.
The raw mean square error, corresponding to p = 0, leads
to significantly inferior performance. In contrast, p = 1
provides the optimal balance of robustness, leading to the
best overall performance.

Value of )\¢ng. The hyperparameter \e,q governs the con-
vergence rate of A towards zero. A larger Aepg results in a
slower but smoother learning of the average velocity, while
a smaller value leads to a faster but more unstable learning
process. Our experiments show that a moderate value of
1/500 achieves relatively better performance.



5. Conclusion

In this paper, we introduced SoundVCM, a novel velocity
consistency model designed for efficient, high-fidelity
video-to-audio synthesis. By introducing a novel train-
ing objective under the Flow Matching framework, our
approach learns a ground-truth average velocity field,
eliminating the need for costly diffusion pre-training
or Jacobian-Vector Product computations. Integrating
Classifier-Free Guidance further improves audio qual-
ity in few-step inference. Experiments on VGGSound
demonstrate that SoundVCM bridges the gap between
generation quality and efficiency, achieving compet-
itive audio fidelity with far fewer inference steps—a
key step toward real-time video-to-audio applications.
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SoundVCM: Efficient Video-to-Audio Generation
with Velocity Consistency Models

Supplementary Material

A. Learning Objective Analysis

In this section, we provide an analysis demonstrating that
minimizing this learning objective enables the neural net-
work ug(z¢,t, s) to correctly approximate the ground truth
average velocity field u(xy, t, s).

Recall that our learning objective is defined as:

MSE
Lvem = Ei 5.2, {w(D) : Hue(xt,t, s)
9 (17)
[z, t) + (1 — Nug- (24,1, 9)) ’2] ,

We firstly consider the case where ¢ = s. By definition,
u(xe, t,t) = v(xy, t). Since we sample a certain proportion
of data points with ¢ = s during training and set A = 1, our
model effectively learns the instantaneous velocity field via
standard flow matching loss.

Next, we consider the case where s < t. Letl; = s+ (t—
s)% fori € {0,1,---,N} be N + 1 discrete time points
such that lp = s and Iy = t. Letting £;,, = x+, we can
iteratively define the Euler approximate trajectory:

@li—l = i.li + U(xlmli)(lifl - lz)

—t (18)
=&, +v(xli,li)sT, ie{1,2,--- N}

This represents an approximate ODE trajectory generated
by an Euler solver using the ground truth instantaneous ve-
locity field v(xy,t). In contrast, the points on the ground
truth trajectory are governed by the ground truth average
velocity field u(x¢, t, s):

xy,_, =, Fulzy, b o) (Lo — 1)

i€{1,2,---,N}.
19)
We assume that the ground truth average velocity func-
tion is continuously differentiable with globally bounded
derivatives. Using the property u(z:,t,t) = v(x,t) for
all t € [0, 1], we have:

s—1t
=y, + U(ffliylialifl)T7

s—t
N
s — s—t 2
N O((N)) 20)
_t 2

Ty, = o +u(xg, tIn_1)

=x + v(wy, t) ——

Proceeding iteratively, we derive:

s—t
N

Tin o, = Tiy_, @iy o In—1,IN—2)

=z +v(&iy_,,In-1) (

R s—t
:$1N72+2O (( N ) ).
Continuing this process until [y = s, we obtain:
2
R s—t
xs:{L‘lO:{Elo-l-NXO(( N ) )
(22)

— 3,40 <(S Nt)2>.

This result confirms that, as the Euler solver is a first-order
method, the solution Z, deviates from the true solution z,

2y

with an error of magnitude O(#)

Now, assume that after training, the model satisfies an
error bound e, for arbitrary 0 < s < I < ¢t < 1 and
x; € RP:

ug(xe, t,s) — [i_ v(xy, t)+
o=t 2,1 < =
( - S—t> UG(xla 78):| ) €max
||U9(:Et,t,s)(s - t) - [(l - t) (mtvt)+ (24)

(s = Dug(2y,1, 8)] Hg < emaz(s —t).

Combining this with the time points /; defined previously,
for a single step we have:

|| [ug(as,t, s)(s — t) —

—(s—In—1)ue(Ziy_1,IN=1,5)

(In—1 = tyv(zs, 1))
Ill> < emaa(s = ).

(25)

We can iteratively apply Equation 24 to Equation 25 to ob-
tain:

N-1
ug(ze,t,8)(s —t) Z li = ligr)v(,,,,t)
=0

N—
E emcu
=0

2
(26)

Nem(u (3 - t)



By the definition of Z5 = Z;, and the approximate trajectory
construction, we know that:

N—
(ll — li+1)7)(fi'li+1;t) = ‘f:lo — i'lN = i‘s — jt
0

:xs—a:t+0<(sj_vt)2>.

—

1=

27)

Substituting this back into Equation 26, we have:

|luo (@i, t,8)(s —t) — (x5 — xt)”z

—_ )2 28
szvem<s—t)+0<(sN”)- 29

Recalling that x5 = z; + (s — t)u(xy, t, s), we divide by
(s — t) to obtain the final bound:

s—t
N

||’Z,L9(l't,t,5) - U(It,t, S)||2 < Nemax +0 <

(29)
During training, we set A = %, which essentially corre-
sponds to a discretization scheme where N ~ O(3). As
A — 0 (implying N becomes large), the remainder term
O(%5%) decreases. Therefore, if the model’s training loss
(eémaz) and X are sufficiently small, the derived bound en-
sures that our model ugy accurately approximates the ground
truth velocity field u(zy, ¢, s). This inequality also suggests
that selecting an excessively small A is suboptimal, as the
growth of N may outpace the reduction in €,,4,. This ob-
servation aligns with our ablation study, where Aepg = ﬁ
yi;elds better performance than both \epg = ﬁ and Aepg =

1000 *

B. Network Details

Our model backbone is primarily built upon MMAudio [4].
For completeness and to contextualize the simplified archi-
tectures discussed in Section 3.5, we provide the detailed
specifications of our model below.

B.1. Model Conditioning

We utilize averaged text and visual features to condition the
DiT blocks. Specifically, after linear projection, the text fea-
tures ¢y undergo average pooling across the token dimen-
sion, while the visual features v are average-pooled across
the time dimension. Subsequently, we compute the global
condition ¢4, which is applied to the MMDIiTs, by summing
the time embedding and the output of an MLP processing
the combined features: MLP (avgen(tf) + avgime (V7))
This global condition is further added to the frame-aligned
synchronization feature to yield the frame-aligned sync con-
ditioning ¢y, which serves as input to both the MMDiT and
DiT modules.

B.2. Sinusoidal Frequency

Our implementation of sinusoidal embeddings adheres to
the standard positional encoding principles used in Trans-
formers [43], where each timestep is mapped to oscillating
components of distinct frequencies:

PE(t, 2i) = cos(t/10000%/4),

PE(t,2i + 1) = sin(t/10000%/%). G0
However, the MMAudio-v2 implementation sets
max_period = 1, effectively collapsing the frequency
spectrum. This results in nearly constant embeddings
for neighboring timesteps, drastically reducing the
model’s capacity to represent temporal distances or phase
relationships. While such compression may remain tol-
erable for discrete diffusion steps, it proves detrimental
to consistency-based models, which rely on smooth,
continuous evolution within the latent space.

In our formulation, we restore a larger period
(max_period = 10%), thereby reinstating a broad fre-
quency basis and preserving temporal resolution across the
embedding space. This modification enables the model
to capture both fine-grained local variations and long-term
consistency between timesteps. Empirically, we observe
that utilizing a large max_period stabilizes the velocity
field estimation and significantly improves temporal coher-
ence in the generated outputs.

B.3. Feature Projection

Audio, text, and video features are processed by distinct
projection modules before serving as inputs to the MMDiT
blocks. Following MMAudio, we project audio latents
using a Convld (kernel=7, pad=3) layer, followed
by an SELU activation and a ConvMLP (kernel=3,
pad=1) module. Text features derived from the CLIP
text encoder are mapped directly using a linear layer fol-
lowed by an MLP. Conversely, visual features from the
CLIP visual encoder are processed via a linear layer and
a ConvMLP (kernel=3, pad=1) module. Addition-
ally, we project synchronization features using an architec-
ture similar to the audio projector, replacing only the final
layer with a ConvMLP (kernel=3, pad=1). We em-
ploy Convld and ConvMLP in these components as they
capture temporal relationships within features more effec-
tively than standard MLPs.

C. Additional Visualization

In video-to-audio generation, especially for multi-shot sce-
narios such as concert recordings, the model must maintain
temporal and semantic consistency across visual segments.
When the camera cuts from a wide orchestral shot to close-
ups of individual percussionists, the audio should remain
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Figure 4. Mel-spectrogram comparison on a VGGSound test clip. Prompt: playing timpani. Yellow-green dashed lines indicate visual

segment boundaries; blue dashed lines highlight accented beats.

globally coherent rather than respond to each view inde-
pendently. Although text prompts in VGGSound [2] (e.g.,
“playing timpani”’) sometimes capture only local actions,
textual guidance still plays a crucial role: text-free models
such as Frieren [47] fail to generate reasonable audio in the
first two segments and overreact to the third close-up.

Figure 4 compares the mel-spectrograms from several
models across three visual segments: an orchestral wide
shot, a timpani close-up, and a drum-set close-up. Despite
the unified nature of the performance, most baselines in-
troduce discontinuities—melodic components appear in the
first two segments but vanish in the third, which collapses
into isolated drum hits. This reflects a misinterpretation of
shot changes as alterations in the underlying sound source.

Our SoundVCM (4-NFE) achieves the best cross-
segment coherence, preserving harmonic structure across

all segments and correctly interpreting the shots as differ-
ent viewpoints of a continuous event. The 1-step version
remains relatively consistent as well, though the third seg-
ment becomes more percussive; it is still noticeably more
stable than other baselines.

Finally, we analyze rhythmic alignment using the ac-
cented beats marked by blue dashed lines. Both SoundVCM
(1-step and 4-step) and MMAudio [4] (252 steps) closely
adhere to the ground-truth beat pattern, particularly in seg-
ments 2 and 3 where percussion actions are visually ex-
plicit. Models that effectively utilize visual timing cues
demonstrate clearer and more accurate beat placement,
with SoundVCM exhibiting the strongest overall alignment
across segments.
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