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Abstract

The multi-step denoising process in diffusion and Flow Matching models causes major efficiency
issues, which motivates research on few-step generation. We present Solution Flow Models (SoFlow),
a framework for one-step generation from scratch. By analyzing the relationship between the velocity
function and the solution function of the velocity ordinary differential equation (ODE), we propose a
Flow Matching loss and a solution consistency loss to train our models. The Flow Matching loss
allows our models to provide estimated velocity fields for Classifier-Free Guidance (CFG) during
training, which improves generation performance. Notably, our consistency loss does not require the
calculation of the Jacobian-vector product (JVP), a common requirement in recent works that is
not well-optimized in deep learning frameworks like PyTorch. Experimental results indicate that,
when trained from scratch using the same Diffusion Transformer (DiT) architecture and an equal
number of training epochs, our models achieve better FID-50K scores than MeanFlow models on the
ImageNet 256×256 dataset. Our code is available at github.com/zlab-princeton/SoFlow.

(a) 1-NFE samples from our XL/2 model

Size MeanFlow SoFlow

B/2 6.17 4.85
M/2 5.01 3.73
L/2 3.84 3.20
XL/2 3.43 2.96

(b) 1-NFE FID-50K comparison

Figure 1 Visual samples and quantitative comparison. (a) One-step samples generated by our Solution Flow Models
on the ImageNet 256×256 dataset. (b) With the same Diffusion Transformer (Peebles and Xie, 2023) architecture and
the same number of training epochs, our models (SoFlow) consistently achieve better 1-NFE FID-50K scores than
MeanFlow (Geng et al., 2025) models on the ImageNet 256×256 dataset.

1 Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Song and Ermon, 2019; Ho et al., 2020; Song et al., 2020)
and Flow Matching models (Lipman et al., 2022; Liu et al., 2022; Albergo and Vanden-Eijnden, 2022) have
emerged as foundational frameworks in generative modeling. Diffusion models operate by systematically
adding noise to data and then learning a denoising process to generate high-quality samples. Flow Matching
offers a more direct alternative, modeling the velocity fields that transport a simple prior distribution to a
complex data distribution. Despite their power and success across various generative tasks (Esser et al., 2024;
Ma et al., 2024; Polyak et al., 2024), both approaches rely on an iterative, multi-step sampling process, which
hinders their generation efficiency.
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Addressing this latency is becoming a key area of research. Consistency Models (Song et al., 2023; Song and
Dhariwal, 2023; Geng et al., 2024; Lu and Song, 2024) and related techniques (Kim et al., 2023; Wang et al.,
2025a; Frans et al., 2024; Heek et al., 2024) have gained prominence by enabling rapid, few-step generation.
These methods learn a direct mapping from any point on a generative trajectory to a consistent, “clean”
output, bypassing the need for iterative refinement. However, this paradigm introduces significant challenges.
Consistency models trained from scratch often fail to leverage Classifier-Free Guidance (CFG) for enhancing
sample quality, and they are further hindered by instability caused by changing optimization targets. Recent
works (Peng et al., 2025; Geng et al., 2025) address this instability by incorporating a Flow Matching loss.
However, this approach introduces a new computational bottleneck: it relies on Jacobian-vector product
(JVP) calculations, which are much less optimized than forward propagation in frameworks such as PyTorch.

MSE

Data Noise 

Target

Velocity ODE Trajectories

Figure 2 Illustration of solution consistency loss. The plot shows a straight-line Flow Matching trajectory defined by
a data-noise pair (𝑥0, 𝑥1), where 𝑥𝑡 is the intermediate point given by 𝑥𝑡 = 𝛼𝑡𝑥0 + 𝛽𝑡𝑥1 (𝛼𝑡, 𝛽𝑡 are 𝐶1 functions with
𝛼0 = 𝛽1 = 1, 𝛼1 = 𝛽0 = 0). Given three time points 𝑠 < 𝑙 < 𝑡, the mean squared error is computed between our model
𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) and the stop-gradient target 𝑓𝜃− (𝑥𝑡 + (𝛼′

𝑡𝑥0 + 𝛽′
𝑡𝑥1)(𝑙 − 𝑡), 𝑙, 𝑠).

In this work, we introduce a new approach for one-step generation that avoids these limitations. Instead
of relying on iterative ODE solvers, we propose directly learning the solution function of the velocity ODE
defined by Flow Matching to generate high-quality samples, as shown in Figure 1a, Figure 4, and Figure 5.
We denote this function as 𝑓(𝑥𝑡, 𝑡, 𝑠), which explicitly maps a state 𝑥𝑡 at time 𝑡 to its evolved state 𝑥𝑠 at
another time 𝑠. To learn it with a parameterized model 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠), we first analyze the properties that enable
a neural network to serve as a valid solution function.

Based on this analysis, we formulate a training objective comprising a Flow Matching loss and a solution
consistency loss (see Figure 2). The resulting model, 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠), not only accommodates the Flow Matching
objective and CFG naturally but also eliminates the need for expensive JVP calculations during training.
Our experimental results demonstrate the effectiveness of this approach, showing that our models achieve
superior FID-50K scores compared to MeanFlow models on the ImageNet 256×256 dataset, using the same
Diffusion Transformer (DiT) architecture and the same number of training epochs.

2 Related Work
Diffusion, Flow Matching, and Stochastic Interpolants. Diffusion models (Sohl-Dickstein et al., 2015; Song
et al., 2020; Kingma et al., 2021; Karras et al., 2022) and Flow Matching (Lipman et al., 2022; Liu et al., 2022)
are widely adopted generative modeling frameworks. These approaches either progressively corrupt data with
noise and train a neural network to denoise it, or learn a velocity field that governs a transformation from the
data distribution to a simple prior. They have been scaled successfully for image generation (Rombach et al.,
2022; Saharia et al., 2022; Podell et al., 2023) and video generation (Ho et al., 2022; Brooks et al., 2024)
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tasks. Stochastic interpolants (Albergo and Vanden-Eijnden, 2022; Albergo et al., 2023) build upon these
concepts by explicitly defining stochastic trajectories between the data and prior distributions and aligning
their associated velocity fields to enable effective distributional transport.

Few-step Generative Models. Reducing the number of sampling steps has become an active research direction,
driven by the need for faster generation and better theoretical insights. Prior efforts fall into two main
streams: (i) distillation-based approaches that compress pre-trained multi-step models into few-step generators
(Salimans and Ho, 2022; Sauer et al., 2024; Geng et al., 2023; Luo et al., 2023b; Yin et al., 2024; Zhou et al.,
2024); and (ii) from-scratch training, which learns fast samplers without teachers, most prominently through
the consistency-training family (CMs, iCT, ECT, sCT) (Song et al., 2023; Song and Dhariwal, 2023; Geng
et al., 2024; Lu and Song, 2024).

Consistency Models (CMs) collapse noised inputs directly to clean data, enabling one- or few-step generation
(Song et al., 2023). While first applied mainly in distillation (Luo et al., 2023a; Geng et al., 2024), later works
established that they can also be trained from scratch via consistency training (Song and Dhariwal, 2023).
Building on this, iCT (Song and Dhariwal, 2023) simplifies objectives and improves stability with robust losses
and teacher-free training, while ECT (Geng et al., 2024) introduces a continuous-time ODE formulation that
unifies CMs and diffusion. The recent sCT framework (Lu and Song, 2024) further stabilizes continuous-time
consistency training, scaling CMs up to billion-parameter regimes. Beyond fixed start and end settings, newer
approaches extend CMs to arbitrary timestep transitions, aligning better with continuous-time dynamics.

Specifically, Shortcut Models (Frans et al., 2024) condition on noise level and step size to flexibly support both
one- and few-step sampling with shared weights. MeanFlow (Geng et al., 2025) introduces interval-averaged
velocities and analyzes the relationship between averaged and instantaneous velocities. IMM (Zhou et al., 2025)
matches moments across transitions in a single-stage objective, reducing variance and avoiding multi-stage
distillation. Flow-Anchored CMs (Peng et al., 2025) regularize shortcut learning with a Flow Matching
anchor, improving stability and generalization. On the distillation side, Align Your Flow (Sabour et al.,
2025) unifies CM and FM into continuous-time flow maps effective across arbitrary step counts, further
enhanced with autoguidance and adversarial fine-tuning. Finally, Transition Models (Wang et al., 2025b)
reformulate generation around exact finite-interval dynamics, unifying few- and many-step regimes and
achieving monotonic quality gains as step budgets increase.

3 Preliminary: Flow Matching
We first introduce the setting of Flow Matching. Flow Matching models learn a velocity field that transforms
a known prior distribution like the standard Gaussian distribution to the data distribution. More precisely,
we denote the data distribution as 𝑝(𝑥0), and the prior distribution as 𝑝(𝑥1), which is the standard Gaussian
distribution 𝒩 (0, 𝐼𝑛) in our setting, where 𝑛 represents the data dimension.

A general noising process is defined as 𝑥𝑡 = 𝛼𝑡𝑥0 + 𝛽𝑡𝑥1, where 𝑥𝑡 ∈ R𝑛, 𝑡 ∈ [0, 1], 𝛼𝑡 and 𝛽𝑡 are continuously
differentiable functions satisfying the boundary conditions 𝛼0 = 1, 𝛼1 = 0, 𝛽0 = 0, and 𝛽1 = 1. Then, the
marginal velocity field associated with the noising process is defined as

𝑣(𝑥𝑡, 𝑡) = E𝑝(𝑥0,𝑥1|𝑥𝑡)[𝛼′
𝑡𝑥0 + 𝛽′

𝑡𝑥1], (1)

which is a conditional expectation given 𝑥𝑡 of the conditional velocity field. 𝛼′
𝑡 and 𝛽′

𝑡 denote the derivatives
of 𝛼𝑡 and 𝛽𝑡. According to the Flow Matching framework, given the marginal velocity field 𝑣(𝑥𝑡, 𝑡), new
samples can be generated by first sampling 𝑥1 ∼ 𝑝(𝑥1), and then solving the initial value problem (IVP) of
the following velocity ordinary differential equation (ODE) from 𝑡 = 1 to 𝑡 = 0:

𝑑𝑋(𝑡)
𝑑𝑡

= 𝑣(𝑋(𝑡), 𝑡), 𝑋(1) = 𝑥1. (2)

To construct a generative model based on this principle, a straightforward approach is to approximate the
marginal velocity field using a neural network 𝑣𝜃, parameterized by 𝜃, which is trained by minimizing the
following mean squared objective:

ℒVel(𝜃) = E𝑡,𝑥𝑡
‖𝑣𝜃(𝑥𝑡, 𝑡) − 𝑣(𝑥𝑡, 𝑡)‖2

2 . (3)
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However, directly optimizing a neural network with this loss is impractical since the real velocity field 𝑣(𝑥𝑡, 𝑡)
is a conditional expectation given 𝑥𝑡. To overcome this challenge, a conditional variant of the Flow Matching
loss is introduced (Lipman et al., 2022; Liu et al., 2022):

ℒCFM(𝜃) = E𝑡,𝑥0,𝑥1,𝑥𝑡
‖𝑣𝜃(𝑥𝑡, 𝑡) − (𝛼′

𝑡𝑥0 + 𝛽′
𝑡𝑥1)‖2

2 . (4)

Minimizing ℒCFM is equivalent to minimizing the original objective ℒVel. This loss function is tractable since
we only need to sample data-noise pairs to construct targets for the network.

4 Solution Flow Models
4.1 Formulations

The main purpose of this work is to investigate how to train a neural network that can directly solve the
velocity ODE, thereby eliminating the reliance on numerical ODE solvers in Flow Matching models. We
study this problem under the assumption that the velocity field 𝑣(𝑥𝑡, 𝑡) ∈ R𝑛, with 𝑥𝑡 ∈ R𝑛 and 𝑡 ∈ [0, 1], is
continuously differentiable and globally Lipschitz continuous with respect to 𝑥𝑡, i.e., ‖𝑣(𝑥𝑡, 𝑡) − 𝑣(𝑦𝑡, 𝑡)‖2 ≤
𝐿𝑣‖𝑥𝑡 − 𝑦𝑡‖2, ∀𝑥𝑡, 𝑦𝑡 ∈ R𝑛, 𝑡 ∈ [0, 1].

According to the existence and uniqueness theorem of ODEs, these two assumptions guarantee that, given
initial condition 𝑋(𝑡) = 𝑥𝑡, where 𝑥𝑡 ∈ R𝑛, 𝑡 ∈ [0, 1] can be arbitrarily chosen, a unique solution 𝑋(𝑠), 𝑠 ∈ [0, 𝑡]
to the velocity ODE 𝑑𝑋(𝑠)

𝑑𝑠 = 𝑣(𝑋(𝑠), 𝑠) exists. Since the initial condition can be varied, we denote this unique
solution by notation 𝑓(𝑥𝑡, 𝑡, 𝑠). Then we immediately have two identities by the definition of the ODE, for
any 𝑥𝑡 ∈ R𝑛, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1:

𝑓(𝑥𝑡, 𝑡, 𝑡) = 𝑥𝑡, (5)
𝜕3𝑓(𝑥𝑡, 𝑡, 𝑠) = 𝑣(𝑓(𝑥𝑡, 𝑡, 𝑠), 𝑠), (6)

where 𝜕3𝑓(𝑥𝑡, 𝑡, 𝑠) ∈ R𝑛 is the partial derivative function of 𝑓(𝑥𝑡, 𝑡, 𝑠) with respect to the third variable.
Equivalently, the two equations can also be written as the following integral equation:

𝑓(𝑥𝑡, 𝑡, 𝑠) = 𝑥𝑡 +
∫︁ 𝑠

𝑡

𝑣(𝑓(𝑥𝑡, 𝑡, 𝑢), 𝑢)𝑑𝑢. (7)

Since 𝑓(𝑥𝑡, 𝑡, 𝑠) maps an initial value 𝑥𝑡 at time 𝑡 to the unique solution of the velocity ODE at time 𝑠, we
denote it as the solution function in this paper. Owing to the continuous differentiability of the velocity field
𝑣(𝑥𝑡, 𝑡), the solution function 𝑓(𝑥𝑡, 𝑡, 𝑠) is also continuously differentiable. To realize one-step generation,
we need to train a model 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) to approximate the ground truth solution function 𝑓(𝑥𝑡, 𝑡, 𝑠), which is
determined uniquely by the velocity field 𝑣(𝑥𝑡, 𝑡).

Under the setting discussed above, the following two conditions are sufficient to ensure that 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) =
𝑓(𝑥𝑡, 𝑡, 𝑠) for all 𝑥𝑡 ∈ R𝑛, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1:

𝑓𝜃(𝑥𝑡, 𝑡, 𝑡) = 𝑥𝑡, (8)
𝜕1𝑓𝜃(𝑥𝑡, 𝑡, 𝑠)𝑣(𝑥𝑡, 𝑡) + 𝜕2𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) = 0. (9)

where 𝜕1𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) ∈ R𝑛×𝑛 is the Jacobian matrix function of 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) with respect to the first variable,
𝑣(𝑥𝑡, 𝑡) is multiplied with it via a matrix-vector product, and 𝜕2𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) ∈ R𝑛 is the partial derivative vector
function of 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) with respect to the second variable.

This can be proven by expanding the following derivative for 0 ≤ 𝑠 ≤ 𝑙 ≤ 𝑡 ≤ 1:
𝜕

𝜕𝑙
(𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠)) = 𝜕1𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠) 𝜕3𝑓(𝑥𝑡, 𝑡, 𝑙)⏟  ⏞  

=𝑣(𝑓(𝑥𝑡,𝑡,𝑙),𝑙)

+𝜕2𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠) = 0. (10)

The expression is equal to 0 due to the conditions in Equation 6 and Equation 9. Thus, we know that the
model 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) is indeed the true solution function 𝑓(𝑥𝑡, 𝑡, 𝑠) by:

𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) = 𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑡), 𝑡, 𝑠) = 𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑠), 𝑠, 𝑠) = 𝑓(𝑥𝑡, 𝑡, 𝑠), (11)

where we use the property that 𝑓(𝑥𝑡, 𝑡, 𝑡) = 𝑓𝜃(𝑥𝑡, 𝑡, 𝑡) = 𝑥𝑡 and 𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠) is invariant with respect to
𝑙, allowing us to set 𝑙 = 𝑡 and 𝑙 = 𝑠 to finish the proof.
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4.2 Learning Objectives

We now consider how to construct efficient objectives for neural networks to learn the ground truth solution
function, according to the two conditions mentioned in the previous section. To ensure the first boundary
condition in Equation 8 is satisfied, we adopt the following parameterization:

𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) = 𝑎(𝑡, 𝑠)𝑥𝑡 + 𝑏(𝑡, 𝑠)𝐹𝜃(𝑥𝑡, 𝑡, 𝑠), (12)

where 𝑎(𝑡, 𝑠) and 𝑏(𝑡, 𝑠) are continuously differentiable scalar functions satisfying 𝑎(𝑡, 𝑡) = 1 and 𝑏(𝑡, 𝑡) = 0 for
all 𝑡 ∈ [0, 1], and 𝐹𝜃(𝑥, 𝑡, 𝑠) denotes a raw neural network. Following the notation in the last section, we use
𝜕1𝑎(𝑡, 𝑠), 𝜕2𝑎(𝑡, 𝑠), 𝜕1𝑏(𝑡, 𝑠), 𝜕2𝑏(𝑡, 𝑠) to denote the partial derivatives of 𝑎(𝑡, 𝑠) and 𝑏(𝑡, 𝑠) with respect to the
first and second variables. In our experiments, we choose two specific parameterizations, including the Euler
parameterization and the trigonometric parameterization:

𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) = 𝑥𝑡 + (𝑠 − 𝑡)𝐹𝜃(𝑥𝑡, 𝑡, 𝑠), (13)

𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) = cos
(︁𝜋

2 (𝑠 − 𝑡)
)︁

𝑥𝑡 + sin
(︁𝜋

2 (𝑠 − 𝑡)
)︁

𝐹𝜃(𝑥𝑡, 𝑡, 𝑠). (14)

Trivially, these two parameterizations satisfy the boundary condition 𝑓𝜃(𝑥𝑡, 𝑡, 𝑡) = 𝑥𝑡. Then, we construct two
loss functions for training using Equation 9.

Flow Matching Loss. Firstly, we consider a special case of Equation 9 when 𝑡 = 𝑠. Recall that the boundary
condition Equation 8 gives 𝑓𝜃(𝑥𝑡, 𝑡, 𝑡) = 𝑥𝑡, ∀𝑥𝑡 ∈ R𝑛, 𝑡 ∈ [0, 1]. Thus, we have:

𝜕1𝑓𝜃(𝑥𝑡, 𝑡, 𝑡) = 𝐼𝑛, 0 = 𝜕𝑓𝜃(𝑥𝑡, 𝑙, 𝑙)
𝜕𝑙

⃒⃒⃒⃒
𝑙=𝑡

= 𝜕2𝑓𝜃(𝑥𝑡, 𝑡, 𝑡) + 𝜕3𝑓𝜃(𝑥𝑡, 𝑡, 𝑡), (15)

where 𝐼𝑛 ∈ R𝑛×𝑛 is the identity matrix. Then Equation 9 can be simplified to 𝑣(𝑥𝑡, 𝑡) = 𝜕3𝑓𝜃(𝑥𝑡, 𝑡, 𝑡). Under
our parameterization mentioned above, we have

𝑣(𝑥𝑡, 𝑡) = 𝜕3𝑓𝜃(𝑥𝑡, 𝑡, 𝑡) = 𝜕2𝑎(𝑡, 𝑡)𝑥𝑡 + 𝜕2𝑏(𝑡, 𝑡)𝐹𝜃(𝑥𝑡, 𝑡, 𝑡) + 𝑏(𝑡, 𝑡)⏟  ⏞  
0

𝜕3𝐹𝜃(𝑥𝑡, 𝑡, 𝑡). (16)

where the complex term containing 𝜕3𝐹𝜃(𝑥𝑡, 𝑡, 𝑡) is canceled since 𝑏(𝑡, 𝑡) = 0 by our choice of parameterization.
Now we obtain a Flow Matching loss for our neural networks:

ℒFM(𝜃)=E𝑡,𝑥0,𝑥1,𝑥𝑡

[︂
𝑤FM(𝑡, MSE)

𝑛
‖𝜕2𝑎(𝑡, 𝑡)𝑥𝑡 + 𝜕2𝑏(𝑡, 𝑡)𝐹𝜃(𝑥𝑡, 𝑡, 𝑡) − (𝛼′

𝑡𝑥0 + 𝛽′
𝑡𝑥1)‖2

2

]︂
, (17)

where 𝑛 is the data dimension, 𝛼′
𝑡𝑥0 + 𝛽′

𝑡𝑥1 is used to replace the intractable marginal velocity field 𝑣(𝑥𝑡, 𝑡) =
E𝑝(𝑥0,𝑥1|𝑥𝑡)[𝛼′

𝑡𝑥0 + 𝛽′
𝑡𝑥1] during the training process following the standard Flow Matching framework. In

addition, this velocity term can also be provided by a teacher model in distillation situations, but in this
paper, we focus on the from-scratch training setting.

Previous works (Geng et al., 2024, 2025) have demonstrated that choosing an adaptive weighting function is
beneficial for few-step generative models. Following their approach, we choose

𝑤FM(𝑡, MSE) = 1
|𝜕2𝑏(𝑡, 𝑡)|(MSE + 𝜖)𝑝

(18)

as our weighting function, where |𝜕2𝑏(𝑡, 𝑡)| is used to balance the raw network’s gradients across time, and
MSE represents the original mean squared error. Here 𝜖 is a smoothing factor to prevent excessively small
values, and 𝑝 is a factor that determines how robust the loss is. For 𝑝 = 0, the objective degenerates to the
mean squared error. For 𝑝 > 0, this factor will reduce the contribution of the data points with large errors in
a data batch to make the objective more robust.

The original Flow Matching framework samples 𝑡 uniformly, while more recent works (Esser et al., 2024; Geng
et al., 2025) suggest sampling 𝑡 from a logit-normal distribution. We also sample 𝑡 from 𝜎(𝒩 (𝜇FM, 𝜎2

FM)),
where 𝜎(·) and 𝒩 represent the sigmoid function and normal distribution.
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Solution Consistency Loss. We now consider how to build a training target for the 𝑠 < 𝑡 situation using
Equation 9. According to the Taylor expansion, we have an approximation equation:

𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) − 𝑓𝜃(𝑥𝑡 + 𝑣(𝑥𝑡, 𝑡)(𝑙 − 𝑡), 𝑙, 𝑠)
𝑡 − 𝑙

= (𝜕1𝑓𝜃(𝑥𝑡, 𝑡, 𝑠)𝑣(𝑥𝑡, 𝑡) + 𝜕2𝑓𝜃(𝑥𝑡, 𝑡, 𝑠)) + 𝑜(1), (19)

where 𝑙 ∈ (𝑠, 𝑡) is close to 𝑡. We therefore propose a solution consistency loss ℒSCM(𝜃):

ℒSCM(𝜃) = E𝑡,𝑙,𝑠,𝑥0,𝑥1,𝑥𝑡

[︂
𝑤SCM(𝑡, 𝑙, 𝑠, MSE)

𝑛

⃦⃦
𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) − 𝑓𝜃−

(︀
𝑥𝑡 + (𝛼′

𝑡𝑥0 + 𝛽′
𝑡𝑥1)(𝑙 − 𝑡), 𝑙, 𝑠

)︀⃦⃦2
2

]︂
, (20)

where 𝑛 is the data dimension, 𝜃− means applying the stop-gradient operation to the parameters, and
(𝛼′

𝑡𝑥0 + 𝛽′
𝑡𝑥1) is again used to replace the intractable 𝑣(𝑥𝑡, 𝑡) = E𝑝(𝑥0,𝑥1|𝑥𝑡)[𝛼′

𝑡𝑥0 + 𝛽′
𝑡𝑥1] following the common

practice. The adaptive weighting is chosen as follows:

𝑤SCM(𝑡, 𝑙, 𝑠, MSE) = 1
(𝑡 − 𝑙)|𝑏(𝑡, 𝑠)| × 1

( MSE
(𝑡−𝑙)2 + 𝜖)𝑝

, (21)

where the first term ensures the gradient magnitude of the raw network 𝐹𝜃(𝑥𝑡, 𝑡, 𝑠) is stable, and the second
term is again used to provide a more robust loss by scaling down the coefficient for data points with large
mean squared errors when 𝑝 > 0. Besides, we divide the mean squared error in the adaptive term by (𝑡 − 𝑙)2

since its magnitude is proportional to (𝑡 − 𝑙)2.

As for the sampling method of 𝑡, 𝑙, 𝑠 during training, we first sample 𝑡 and 𝑠 from two logit-normal distributions,
𝜎(𝒩 (𝜇𝑡, 𝜎2

𝑡 )) and 𝜎(𝒩 (𝜇𝑠, 𝜎2
𝑠)), respectively. Here, 𝑠 is clamped to ensure 𝑠 < 𝑡 − 10−4. We then determine 𝑙

using the following method:
𝑙 = 𝑡 + (𝑠 − 𝑡) × 𝑟(𝑘, 𝐾), (22)

where 𝑘, 𝐾 represent the current and total training steps, respectively. The function 𝑟(𝑘, 𝐾) represents a
monotonically decreasing schedule that gradually moves 𝑙 towards 𝑡 throughout training. To avoid numerical
issues, 𝑙 is clamped to ensure 𝑙 < 𝑡 − 10−4. This schedule decreases from an initial value 𝑟init to an end
value 𝑟end. In our ablation studies, we test exponential, cosine, linear, and constant schedules. For more
implementation details, please refer to Appendix A.

The total training loss is a combination of the Flow Matching and solution consistency losses: 𝐿(𝜃) =
𝜆ℒFM(𝜃) + (1 − 𝜆)ℒSCM(𝜃). The parameter 𝜆 controls the balance between them by determining the fraction
of a data batch dedicated to computing ℒFM(𝜃), while the remaining fraction is used for ℒSCM(𝜃). We perform
ablation studies to determine the optimal value of 𝜆.

4.3 Classifier-Free Guidance

Classifier-Free Guidance (CFG) (Ho and Salimans, 2022) is a standard technique in diffusion models for
enhancing conditional generation. The models are trained with randomly dropped conditions to mix conditional
and unconditional data. During inference, CFG is applied by linearly combining predictions from the label-
conditional and unconditional models to enhance generation quality.

To apply CFG to our models, we first introduce the ground-truth guided marginal velocity field:

𝑣𝑔(𝑥𝑡, 𝑡, 𝑐) = 𝑤𝑣(𝑥𝑡, 𝑡 | 𝑐) + (1 − 𝑤)𝑣(𝑥𝑡, 𝑡), (23)

where 𝑣(𝑥𝑡, 𝑡) = E𝑝(𝑥0,𝑥1|𝑥𝑡)[𝛼′
𝑡𝑥0 + 𝛽′

𝑡𝑥1] denotes the unconditional marginal velocity field, 𝑐 represents
conditions (e.g., class labels), 𝑣(𝑥𝑡, 𝑡 | 𝑐) = E𝑝(𝑥0,𝑥1|𝑥𝑡,𝑐)[𝛼′

𝑡𝑥0 + 𝛽′
𝑡𝑥1] denotes the conditional marginal velocity

field, and 𝑤 is the CFG strength. To ensure our conditional model serves as the solution function for the velocity
ODE defined by this guided field (which depends purely on the data distribution and is model-independent),
it should satisfy the following equations:

𝑓𝜃(𝑥𝑡, 𝑡, 𝑡, 𝑐) = 𝑥𝑡, (24)

𝜕1𝑓𝜃(𝑥𝑡, 𝑡, 𝑠, 𝑐)𝑣𝑔(𝑥𝑡, 𝑡, 𝑐) + 𝜕2𝑓𝜃(𝑥𝑡, 𝑡, 𝑠, 𝑐) = 0. (25)
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Analogous to the unconditional setting, we define the guided Flow Matching loss ℒ𝑔
FM(𝜃) as

ℒ𝑔
FM(𝜃) = E𝑡,𝑥𝑡,𝑐

[︂
𝑤FM(𝑡, MSE)

𝑛
‖𝜕2𝑎(𝑡, 𝑡)𝑥𝑡 + 𝜕2𝑏(𝑡, 𝑡)𝐹𝜃(𝑥𝑡, 𝑡, 𝑡, 𝑐) − 𝑣𝑔(𝑥𝑡, 𝑡, 𝑐)‖2

2

]︂
, (26)

and the guided solution consistency loss ℒ𝑔
SCM(𝜃) as

ℒ𝑔
SCM(𝜃) = E𝑡,𝑙,𝑠,𝑥𝑡,𝑐

[︂
𝑤SCM(𝑡, 𝑙, 𝑠, MSE)

𝑛

⃦⃦
𝑓𝜃(𝑥𝑡, 𝑡, 𝑠, 𝑐) − 𝑓𝜃−

(︀
𝑥𝑡 + 𝑣𝑔(𝑥𝑡, 𝑡, 𝑐)(𝑙 − 𝑡), 𝑙, 𝑠, 𝑐

)︀⃦⃦2
2

]︂
, (27)

where 𝑛 is the data dimension, 𝜃− denotes the stop-gradient operator applied to the targets, and the adaptive
weighting functions remain consistent with the unconditional case. The total guided training loss ℒ𝑔(𝜃) is
defined as their linear combination 𝜆ℒ𝑔

FM(𝜃) + (1 − 𝜆)ℒ𝑔
SCM(𝜃).

However, since the unconditional velocity field is generally intractable during conditional training, 𝑣𝑔(𝑥𝑡, 𝑡, 𝑐)
is not directly accessible. To address this, we train the network to concurrently predict the unconditional
velocity field. Specifically, we randomly replace the condition 𝑐 with an empty label 𝜑 (with a probability of
0.1) and update the model using the unconditional Flow Matching loss (Equation 17) and the unconditional
solution consistency loss (Equation 20). Consequently, we can approximate 𝑣(𝑥𝑡, 𝑡) using the model prediction
𝑣uncond = 𝜕2𝑎(𝑡, 𝑡)𝑥𝑡 + 𝜕2𝑏(𝑡, 𝑡)𝐹𝜃−(𝑥𝑡, 𝑡, 𝑡, 𝜑).

For data points with a non-empty condition 𝑐, we compute the guided losses by substituting the velocity term
𝑣𝑔(𝑥𝑡, 𝑡, 𝑐) in Equation 26 and Equation 27 with the estimator 𝑤(𝛼′

𝑡𝑥0 + 𝛽′
𝑡𝑥1) + (1 − 𝑤)𝑣uncond, where 𝑤 is

the CFG strength. Here, 𝛼′
𝑡𝑥0 + 𝛽′

𝑡𝑥1 is used to replace the intractable conditional marginal velocity field
𝑣(𝑥𝑡, 𝑡 | 𝑐), similar to the unconditional formulation.

Notably, the term 𝑤(𝛼′
𝑡𝑥0 + 𝛽′

𝑡𝑥1) + (1 − 𝑤)𝑣uncond typically exhibits higher variance than the original
term 𝛼′

𝑡𝑥0 + 𝛽′
𝑡𝑥1, primarily due to the scaling effect of 𝑤. This increased variance can hinder training

convergence and degrade final performance. We observe that the model learns the guided velocity field via
Equation 27 when conditioned on 𝑐. Therefore, we can obtain a model-predicted guided velocity 𝑣guided via
𝜕2𝑎(𝑡, 𝑡)𝑥𝑡 + 𝜕2𝑏(𝑡, 𝑡)𝐹𝜃−(𝑥𝑡, 𝑡, 𝑡, 𝑐), and then employ

𝑣mix = 𝑚(𝑤(𝛼′
𝑡𝑥0 + 𝛽′

𝑡𝑥1) + (1 − 𝑤)𝑣uncond) + (1 − 𝑚)𝑣guided (28)

to approximate the target 𝑣𝑔(𝑥𝑡, 𝑡, 𝑐) (with expectations also taken over (𝑥0, 𝑥1)), where 0 < 𝑚 ≤ 1 acts as a
velocity mixing ratio. Since the stochastic term 𝛼′

𝑡𝑥0 + 𝛽′
𝑡𝑥1 is the dominant source of variance, using a small

𝑚 effectively mitigates this issue, as the model-predicted 𝑣guided possesses significantly lower variance.

The inference process of our model is straightforward. Since 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠)=𝑎(𝑡, 𝑠)𝑥𝑡 +𝑏(𝑡, 𝑠)𝐹𝜃(𝑥𝑡, 𝑡, 𝑠) is a neural
solution function to the velocity ODE, we only need to sample 𝑥1 ∼ 𝒩 (0, 𝐼𝑛) and apply this function with
𝑡 = 1 and 𝑠 = 0 to obtain the clean data in a single step. Furthermore, similar to consistency models (Song
et al., 2023), our model supports multi-step sampling by adding noise to the predicted data and recursively
applying the solution function.

5 Experiments
5.1 Settings

We conduct our major experiments on the ImageNet 256×256 dataset (Deng et al., 2009). SoFlow models
operate within the latent space of a pre-trained VAE 1(Rombach et al., 2022), which is a common practice
in recent works (Peebles and Xie, 2023; Frans et al., 2024; Geng et al., 2025). The tokenizer converts
256×256 images into a 32×32×4 latent representation. We assess generation quality using the Fréchet
Inception Distance (FID) (Heusel et al., 2017), computed over a set of 50,000 generated samples. To evaluate
computational efficiency, we report the number of function evaluations (NFE), with a particular focus on the
single-step (1-NFE) scenario. All models presented are trained from scratch. In addition to the standard time
variable 𝑡, our model incorporates an additional time variable 𝑠. We provide this to the networks by feeding
the positional embeddings (Vaswani et al., 2017) of their difference, 𝑠 − 𝑡. For more implementation details,
please refer to Appendix A.

1SD-VAE: https://huggingface.co/stabilityai/sd-vae-ft-mse
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5.2 Ablation Study

We conduct various ablation studies to determine the optimal hyperparameters for SoFlow models. Following
the methodology of Geng et al. (2025), we utilize the DiT-B/4 architecture in our ablation experiments, which
features a “base” sized Diffusion Transformer with a patch size of 4. We train our models for 400K iterations.
For performance reference, the original DiT-B/4 (Peebles and Xie, 2023) achieves an FID-50K of 68.4 with
250-NFE sampling. MeanFlow (Geng et al., 2025) reports an FID-50K of 61.06 with 1-NFE sampling, and
the authors claim to have reproduced SiT-B/4 (Ma et al., 2024) with an FID-50K of 58.9 using 250-NFE
sampling. The FID-50K scores mentioned here are without CFG. Our ablation studies are conducted in two
groups: a first group of three experiments without CFG and a second group of three with CFG. Table 1
presents our results, which are analyzed as follows:

𝑟(𝑘, 𝐾) FID-50K

Exponential 58.57
Cosine 61.93
Linear 59.01

Constant 59.52

(a) 𝑙 → 𝑡 schedule 𝑟(𝑘, 𝐾)

𝜆 FID-50K

0% 66.36
25% 61.42
50% 59.61
75% 58.57

(b) Flow Matching data ratio 𝜆

𝑝 FID-50K

0.0 68.25
0.5 60.37
1.0 58.57
1.5 63.72

(c) Loss weighting coefficient 𝑝

𝛼𝑡, 𝛽𝑡 and 𝑎(𝑡, 𝑠), 𝑏(𝑡, 𝑠) FID-50K

Linear, Euler 11.59
Linear, Trigonometric 17.50
Trigonometric, Euler 13.12

Trigonometric, Trigonometric 19.01

(d) Noising schedule and parameterization

𝑤 FID-50K

1.5 34.47
2.0 20.35
2.5 14.60
3.0 11.59

(e) CFG strength 𝑤

𝑚 FID-50K

0.25 11.59
0.5 13.94
0.75 16.29
1.0 17.22

(f) Velocity mix ratio 𝑚

Table 1 Ablation studies on 1-NFE ImageNet 256×256 class-conditional generation. All models have 131M parameters
and are trained with a batch size of 256 for 400K iterations from scratch.

𝑙 → 𝑡 Schedule 𝑟(𝑘, 𝐾). We compare exponential, cosine, linear, and constant schedules in our experiments
(Table 1a). The FID-50K results show that the speed of the 𝑙 → 𝑡 transition during the training process has a
relatively small influence on performance. We choose the best exponential schedule following previous works
(Song and Dhariwal, 2023; Geng et al., 2024).

Flow Matching Data Ratio 𝜆. Although our solution consistency loss alone is sufficient to enable one-step
generation (corresponding to a 0% ratio in Table 1b), experimental results show that incorporating a large
ratio of Flow Matching loss is effective for improving performance.

Loss Weighting Coefficient 𝑝. We observe that the choice of loss metric has a significant influence on the
performance of one-step generation, which aligns with previous works (Song and Dhariwal, 2023; Geng et al.,
2024, 2025; Dao et al., 2025). As shown in Table 1c, the original mean squared loss with 𝑝 = 0 performs much
worse than 𝑝 = 0.5 or 𝑝 = 1 settings.

Noising Schedule and Parameterization. Our method is compatible with different Flow Matching noising
schedules and solution function parameterizations. As presented in Table 1d, experiments show that the linear
noising schedule 𝑥𝑡 = (1 − 𝑡)𝑥0 + 𝑡𝑥1 along with the Euler parameterization 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) = 𝑥𝑡 + (𝑠 − 𝑡)𝐹𝜃(𝑥𝑡, 𝑡, 𝑠)
performs best, compared to the trigonometric noising schedule 𝑥𝑡 = cos( 𝜋

2 𝑡)𝑥0+sin( 𝜋
2 𝑡)𝑥1 and its corresponding

parameterization 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) = cos
(︀

𝜋
2 (𝑠 − 𝑡)

)︀
𝑥𝑡 + sin

(︀
𝜋
2 (𝑠 − 𝑡)

)︀
𝐹𝜃(𝑥𝑡, 𝑡, 𝑠).

CFG Strength 𝑤. Unlike diffusion models, our model enables CFG during the training stage, so the resulting
1-NFE inference is guided without additional inference-time CFG. Experiments in Table 1e demonstrate that
CFG can also greatly improve the generation quality for our model.

Velocity Mix Ratio 𝑚. Experiments (Table 1f) show that a relatively small 𝑚 is beneficial for performance.
This can be explained by the fact that the CFG guidance strength 𝑤 amplifies the variance in the velocity
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method epochs params NFE FID↓
Generative Adversarial Networks
BigGAN (Brock et al., 2018) - 112M 1 6.95
StyleGAN-XL (Sauer et al., 2022) - 166M 1 2.30
GigaGAN (Kang et al., 2023) - 569M 1 3.45
Masked and Autoregressive Models
Mask-GIT (Chang et al., 2022) 555 227M 8 6.18
MagViT-v2 (Yu et al., 2023) 1080 307M 64 1.78
LlamaGen-XL (Sun et al., 2024) 300 775M 576 2.62
VAR (Tian et al., 2024) 350 2.0B 10 1.80
MAR (Li et al., 2024) 800 943M 64 1.55
RandAR-XL (Pang et al., 2025) 300 775M 256 2.22
Multi-step Diffusion Models
LDM-4-G (Rombach et al., 2022) 170 395M 250×2 3.60
MDTv2 (Gao et al., 2023) 700 676M 250×2 1.63
DiT-XL/2 (Peebles and Xie, 2023) 1400 675M 250×2 2.27
SiT-XL/2 (Ma et al., 2024) 1400 675M 250×2 2.06
FlowDCN-XL/2 (Wang et al., 2024) 400 675M 250×2 2.00
SiT-REPA-XL/2 (Yu et al., 2024) 800 675M 250×2 1.42
Few-step Diffusion Models
iCT-XL/2† (Song and Dhariwal, 2023) - 675M 1 / 2 34.24 / 20.30
Shortcut-XL/2 (Frans et al., 2024) 250 675M 1 / 4 10.60 / 7.80
IMM-XL/2 (Zhou et al., 2025) 3840 675M 1×2 / 2×2 7.77 / 3.99
MeanFlow-B/2 (Geng et al., 2025) 240 131M 1 6.17
MeanFlow-M/2 (Geng et al., 2025) 240 308M 1 5.01
MeanFlow-L/2 (Geng et al., 2025) 240 459M 1 3.84
MeanFlow-XL/2 (Geng et al., 2025) 240 676M 1 / 2 3.43 / 2.93
SoFlow-B/2 240 131M 1 / 2 4.85 / 4.24
SoFlow-M/2 240 308M 1 / 2 3.73 / 3.42
SoFlow-L/2 240 459M 1 / 2 3.20 / 2.90
SoFlow-XL/2 240 676M 1 / 2 2.96 / 2.66

Table 2 FID-50K results for class-conditional generation on ImageNet 256×256. ×2 denotes an NFE of 2 per sampling
step incurred by CFG. Entries in the format “1 / 2” indicate that the corresponding FID scores are reported for 1-NFE
and 2-NFE sampling, respectively. † Results as reported in Zhou et al. (2025).

term, and a smaller 𝑚 can suppress this variance by partially replacing the velocity term with the model’s
prediction of the guided velocity field.

5.3 Comparison with Other Works

ImageNet 256×256 Results. We begin by analyzing the 1-NFE FID-50K results of our model across various
model sizes (numbers of parameters), as shown in Figure 3. Our model’s 1-NFE performance gradually
improves with an increase in model parameters, which is consistent with previous observations on Diffusion
Transformers (Peebles and Xie, 2023; Ma et al., 2024; Geng et al., 2025).

Next, we compare our model’s one-step generation performance against previous models, with the results
summarized in Table 2. To make relatively fair comparisons, we train our model by setting the batch size to
256 and the training epochs to 240, consistent with the MeanFlow models (Geng et al., 2025). Experimental
results show that our model consistently outperforms MeanFlow models across all evaluated model sizes when
trained from scratch. Specifically, for smaller models with DiT-B/2 and DiT-M/2 architectures, our model
demonstrates significant improvements, achieving FID-50K scores of 4.85 and 3.73, respectively. Our model
also achieves superior FID-50K values for larger architectures, namely DiT-L/2 and DiT-XL/2, reaching 3.20
and 2.96, respectively. Notably, our models employ CFG during training, which enables generation with
exactly 1-NFE during inference, similar to MeanFlow models. Furthermore, our XL/2 model achieves a strong
2-NFE FID-50K score of 2.66, surpassing the 2.93 achieved by MeanFlow-XL/2.
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In terms of computational efficiency, since our method obviates the need for JVP computation, it benefits
from lower GPU memory usage and faster training speeds compared to MeanFlow models. Please refer to
Appendix D for a detailed comparison.

80 120 160 200 240
# Training Epochs
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Figure 3 FID-50K performance of our models. The plot shows the FID-50K performance of our models with varying
numbers of parameters, all trained from scratch on the ImageNet 256×256 dataset. We apply CFG during training and
report the FID-50K scores of generated images using a 1-NFE sampling process. The results consistently demonstrate
that the performance of our models improves as the model size increases.

method NFE FID

iCT (Song and Dhariwal, 2023) 1 2.83
ECT (Geng et al., 2024) 1 3.60
sCT (Lu and Song, 2024) 1 2.97
IMM (Zhou et al., 2025) 1 3.20
MeanFlow (Geng et al., 2025) 1 2.92
SoFlow 1 2.86

Table 3 FID-50K results for unconditional
generation on CIFAR-10.

CIFAR-10 Results. In Table 3, we report unconditional
generation results on the CIFAR-10 (Krizhevsky et al.,
2009) dataset, where performance is measured by the FID-
50K metric with 1-NFE sampling. For our model, we
adopt the U-Net architecture (Ronneberger et al., 2015)
developed from Song et al. (2020), aligning with prior
works. Our method is applied directly to the pixel space,
with a resolution of 32×32. For more implementation
details, please refer to Appendix A. Our method achieves
competitive performance compared to prior approaches on
this dataset.

6 Conclusion
We have presented SoFlow, a simple yet effective framework for one-step generative modeling. Our approach
directly learns the solution function of the velocity ODE, enabling single-step sampling without iterative
solvers. By leveraging a bi-time formulation and a hybrid training objective combining a Flow Matching loss
and a solution consistency loss, SoFlow naturally supports CFG during training and avoids JVP calculations
that are not well-optimized in deep learning frameworks like PyTorch. Our method demonstrates competitive
performance on the class-conditional ImageNet 256×256 generation task, outperforming MeanFlow models
when trained from scratch under the same settings.
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Appendix
A Implementation Details
We first provide a detailed description of the different scheduling strategies used to determine the intermediate
time variable 𝑙 during training. Recall that 𝑙 is computed from 𝑡 and 𝑠 as follows:

𝑙 = 𝑡 + (𝑠 − 𝑡) × 𝑟(𝑘, 𝐾),

where 𝑘, 𝐾 represent the current and total training steps, and the function 𝑟(𝑘, 𝐾) is a monotonically
decreasing function that controls the progression of 𝑙 from an initial value near 𝑡 towards 𝑡 itself as training
advances. Below we specify the four schedules compared in our ablation studies:

Exponential Schedule:

𝑟(𝑘, 𝐾) = 𝑟init ×
(︂

𝑟end

𝑟init

)︂ 𝑘
𝐾

,

Cosine Schedule:
𝑟(𝑘, 𝐾) = 𝑟end + (𝑟init − 𝑟end) × 1

2

(︂
1 + cos

(︂
𝜋 · 𝑘

𝐾

)︂)︂
,

Linear Schedule:
𝑟(𝑘, 𝐾) = 𝑟init + (𝑟end − 𝑟init) × 𝑘

𝐾
,

Constant Schedule:
𝑟(𝑘, 𝐾) = 𝑟end.

In all cases, 𝑙 is clamped to satisfy 𝑙 < 𝑡 − 10−4 to ensure numerical stability; similarly, we also clamp 𝑠 to
satisfy 𝑠 < 𝑡 − 10−4. The initial value 𝑟init and end value 𝑟end are hyperparameters controlling the starting
and final relative position between 𝑙 and 𝑡. We now detail the training and architectural configurations for
our models on two benchmark datasets. All experiments are run on NVIDIA H100 GPUs.

ImageNet 256×256. We employ the AdamW optimizer (Loshchilov and Hutter, 2017) with a constant
learning rate of 1 × 10−4 and betas set to (0.9, 0.99), without learning rate decay or weight decay. Following
standard practice, we evaluate model performance using Exponential Moving Average (EMA) with a decay
rate of 0.9999. For time sampling, the logit-normal distribution parameters are set as: 𝜇FM = −0.2, 𝜎FM = 1.0;
𝜇𝑡 = 0.2, 𝜎𝑡 = 0.8; 𝜇𝑠 = −1.0, 𝜎𝑠 = 0.8. The Flow Matching data ratio is 75% and the adaptive loss weight
coefficient 𝑝 = 1.0. The schedule parameters are 𝑟init = 1

10 and 𝑟end = 1
500 . We use a linear noising schedule

with Euler parameterization. The CFG strength 𝑤 is set to 2.5, 2.25, 2.0, and 2.0 for the B/2, M/2, L/2, and
XL/2 models, respectively, while the velocity mix ratio 𝑚 is set to 0.25 for all models. Following common
practice, we gradually decay the CFG strength to 1.0 in high-noise regions, setting the decay threshold at
𝑡 > 0.8 for ablation studies and 𝑡 > 0.75 for the main experiments. Specifically, the decay speed is determined
by the function 1 − exp

(︁
− 1

40
𝑡′

1−𝑡′

)︁
, where 𝑡′ = min

(︁
1−𝑡

1−𝑡decay
, 1 − 10−6

)︁
for 𝑡 > 𝑡decay. Here, 𝑡decay denotes

the threshold time and 10−6 is used to ensure numerical stability. We employ this specific smoothing function
rather than a direct decay to ensure that the guided velocity field remains continuously differentiable. Finally,
architectural details are provided in Table 4.

CIFAR-10. Training uses a batch size of 1024 for 800K iterations, consistent with MeanFlow. We adopt the
RAdam (Liu et al., 2019) optimizer with a learning rate of 1 × 10−4, following Song and Dhariwal (2023);
Geng et al. (2024). We evaluate model performance using EMA with a decay rate of 0.9999. Time sampling
parameters are: 𝜇FM = −0.9, 𝜎FM = 1.6; 𝜇𝑡 = −0.9, 𝜎𝑡 = 1.6; 𝜇𝑠 = −4.0, 𝜎𝑠 = 1.6. The Flow Matching data
ratio is 0% with 𝑝 = 0.75. Schedule parameters 𝑟init and 𝑟end are set to 1.0 and 1

3200 respectively. Linear
noising schedule and Euler parameterization are used. Our data augmentation setup follows Karras et al.
(2022), where vertical flipping and rotation augmentations are disabled.
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Architectures SoFlow-B/4 SoFlow-B/2 SoFlow-M/2 SoFlow-L/2 SoFlow-XL/2

Parameters (M) 131 131 308 459 676
FLOPs (≈ G) 5.6 23.0 54.0 81.0 119.0
Depth 12 12 16 24 28
Hidden dimension 768 768 1024 1024 1152
Attention heads 12 12 16 16 16
Patch size 4×4 2×2 2×2 2×2 2×2

Training epochs 80 240 240 240 240

Table 4 Configurations on the ImageNet 256×256 dataset. We detail the specifications for our models, which are
based on the Diffusion Transformer (Peebles and Xie, 2023) architecture. The configurations scale from a 131M
parameter model (B/4) to a 676M parameter model (XL/2) to evaluate performance across different capacities.

B More Visual Samples
We present additional visual results generated by our models for the ImageNet 256×256 and CIFAR-10
datasets in Figure 4 and Figure 5, respectively.

Figure 4 Curated class-conditional 1-NFE samples by our XL/2 model on the ImageNet 256×256 dataset.
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Figure 5 Uncurated 1-NFE unconditional samples by our U-Net model on the CIFAR-10 dataset.

C Pseudo-code for Guided Training Process
To facilitate a deeper understanding of the implementation, we detail the pseudo-code for the guided training
process in Algorithm 1.

Algorithm 1 Train Solution Flow Models with CFG
Input: model 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠, 𝑐), Flow Matching data ratio 𝜆, CFG strength 𝑤, velocity mix ratio 𝑚

Sample a data batch: 𝑥0, 𝑐 ∼ 𝑝𝑑𝑎𝑡𝑎(𝑥0, 𝑐)
Split the data batch for two losses by 𝜆: (𝑥FM

0 , 𝑥SCM
0 ) = 𝑥0, (𝑐FM, 𝑐SCM) = 𝑐

Sample 𝑡FM, 𝑡SCM, 𝑙SCM, 𝑠SCM according to Section 4.2
Compute 𝑥FM

𝑡 , 𝑣FM
𝑡 , 𝑥SCM

𝑡 , 𝑣SCM
𝑡 using standard Flow Matching framework

Compute 𝑣FM
mix and 𝑣SCM

mix with Equation 28 with 𝑤 and 𝑚

Randomly replace 𝑣FM
mix and 𝑣SCM

mix with 𝑣FM
𝑡 and 𝑣SCM

𝑡 with a CFG drop rate 0.1
Replace 𝑐FM and 𝑐SCM with the empty label 𝜑 correspondingly
Compute ℒ𝑔

FM(𝜃) according to Equation 26 by replacing the 𝑣𝑔(𝑥𝑡, 𝑡, 𝑐) term with 𝑣FM
mix

Compute ℒ𝑔
SCM(𝜃) according to Equation 27 by replacing the 𝑣𝑔(𝑥𝑡, 𝑡, 𝑐) term with 𝑣SCM

mix
Update 𝑓𝜃 via gradient descent according to ℒ𝑔(𝜃) = 𝜆ℒ𝑔

FM(𝜃) + (1 − 𝜆)ℒ𝑔
SCM(𝜃)

D Training Efficiency
It is important to note that GPU memory consumption and training speed rely heavily on implementation
details, hardware, and frameworks. To ensure a fair comparison, we evaluate the training costs of MeanFlow
and SoFlow models using an identical PyTorch codebase, differing only by replacing our solution consistency
loss with the MeanFlow loss.
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The results are presented in Table 5. Currently, PyTorch’s memory-efficient attention implementation supports
standard forward and backward passes but lacks support for the Jacobian-vector product (JVP) computation
required by MeanFlow. Consequently, MeanFlow must rely on the standard “math” attention backend. In
contrast, our solution consistency loss is fully compatible with memory-efficient attention. As a result, our
model reduces peak GPU memory usage by approximately 31% and increases training speed by 23% compared
to MeanFlow, demonstrating significant gains in computational efficiency.

MeanFlow (Math Attn.) SoFlow (Math Attn.) SoFlow (Efficient Attn.)
GPU Memory 51.45 GB 38.95 GB 35.44 GB
Training Speed 2.39 iters/sec 2.84 iters/sec 2.94 iters/sec

Table 5 Training Speed and GPU peak memory usage comparison.

E Theoretical Analysis
In this section, we provide additional theoretical analysis to demonstrate that our model can effectively learn
the global ground truth solution function based on our local consistency objectives.

Specifically, we analyze the error between our model 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) and the ground truth 𝑓(𝑥𝑡, 𝑡, 𝑠). Using the
fundamental theorem of calculus, the error can be expressed as:

𝑓(𝑥𝑡, 𝑡, 𝑠) − 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) =
∫︁ 𝑠

𝑡

𝜕

𝜕𝑙
(𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠))𝑑𝑙. (29)

This equality holds because the boundary terms satisfy 𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑡), 𝑡, 𝑠) = 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) and 𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑠), 𝑠, 𝑠) =
𝑓(𝑥𝑡, 𝑡, 𝑠). Applying the chain rule, the integrand term can be expanded as:

𝜕

𝜕𝑙
(𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠)) = 𝜕1𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠)𝜕3𝑓(𝑥𝑡, 𝑡, 𝑙) + 𝜕2𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠). (30)

Since 𝑓(𝑥𝑡, 𝑡, 𝑠) is the ground truth solution function of the velocity ODE defined by 𝑣(𝑥𝑡, 𝑡), we have
𝜕3𝑓(𝑥𝑡, 𝑡, 𝑙) = 𝑣(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙). We define the residual term 𝑅𝜃(𝑥𝑡, 𝑡, 𝑠) as:

𝑅𝜃(𝑥𝑡, 𝑡, 𝑠) = 𝜕1𝑓𝜃(𝑥𝑡, 𝑡, 𝑠)𝑣(𝑥𝑡, 𝑡) + 𝜕2𝑓𝜃(𝑥𝑡, 𝑡, 𝑠), (31)

where we refer to ‖𝑅𝜃(𝑥𝑡, 𝑡, 𝑠)‖2 as the partial differential equation (PDE) error. Substituting this into
Equation 30, we simplify the expression to:

𝜕

𝜕𝑙
(𝑓𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠)) = 𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠). (32)

Combining this with Equation 29, we obtain:

𝑓(𝑥𝑡, 𝑡, 𝑠) − 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) =
∫︁ 𝑠

𝑡

𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠)𝑑𝑙. (33)

During the training process, our model minimizes the difference loss ‖𝑓𝜃(𝑥𝑡, 𝑡, 𝑠)−𝑓𝜃−(𝑥𝑡 +𝑣(𝑥𝑡, 𝑡)(𝑙− 𝑡), 𝑙, 𝑠)‖2
with an adaptive scaling function. To derive an upper bound for the error between our model’s prediction and
the ground truth, we assume that after training, the loss term ‖𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) − 𝑓𝜃−(𝑥𝑡 + 𝑣(𝑥𝑡, 𝑡)(𝑙 − 𝑡), 𝑙, 𝑠)‖2 is
uniformly bounded by 𝑒max|𝑡 − 𝑙|, where 𝑒max is a constant and |𝑡 − 𝑙| represents the magnitude of the error.

Assuming 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) and 𝑣(𝑥𝑡, 𝑡) are twice-continuously differentiable with bounded second-order derivatives,
we can apply the Taylor expansion to bound the discrepancy:

‖𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) − 𝑓𝜃−(𝑥𝑡 + 𝑣(𝑥𝑡, 𝑡)(𝑙 − 𝑡), 𝑙, 𝑠) − 𝑅𝜃(𝑥𝑡, 𝑡, 𝑠)(𝑡 − 𝑙)‖2 ≤ 𝐻(𝑡 − 𝑙)2. (34)
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This implies the remainder is uniformly bounded by 𝐻(𝑡 − 𝑙)2 given the bounded second-order derivatives.
Using the triangle inequality, we combine these bounds:

‖𝑅𝜃(𝑥𝑡, 𝑡, 𝑠)‖2 ≤ 𝑒max + 𝐻|𝑡 − 𝑙| = 𝑒max + 𝐻|𝑠 − 𝑡|𝑟(𝑘, 𝐾), (35)

where 𝑟(𝑘, 𝐾) = 𝑙−𝑡
𝑠−𝑡 is the decreasing schedule function determining 𝑙 as discussed in our paper, and 𝑘, 𝐾

denote the current and total training steps, respectively. For simplicity, we denote this upper bound as 𝛿, i.e.,
‖𝑅𝜃(𝑥𝑡, 𝑡, 𝑠)‖2 ≤ 𝛿. Finally, substituting this back into Equation 33, we arrive at the global error bound:

‖𝑓(𝑥𝑡, 𝑡, 𝑠) − 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠)‖2 ≤ |
∫︁ 𝑠

𝑡

‖𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠)‖2𝑑𝑙| ≤ |𝑠 − 𝑡|𝛿. (36)

As the training loss upper bound 𝑒max and the schedule function value 𝑟(𝑘, 𝐾) decrease sufficiently during
training, our model 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) effectively approximates the solution function 𝑓(𝑥𝑡, 𝑡, 𝑠) with low error.

Furthermore, we provide a theoretical analysis to show that our objective not only enables our model
to learn the ground truth solution function but also implicitly minimizes the ODE error ‖𝜕3𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) −
𝑣(𝑓𝜃(𝑥𝑡, 𝑡, 𝑠), 𝑠)‖2. To derive a bound for the ODE error, we make three mild assumptions. First, we assume
that after training, the residual satisfies ‖𝑅𝜃(𝑥𝑡, 𝑡, 𝑠)‖2 ≤ 𝛿 for all 𝑥 ∈ R𝑛 and 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, where
𝛿 = 𝑒max + 𝐻|𝑠 − 𝑡|𝑟(𝑘, 𝐾) as discussed above. Second, we assume that 𝑣(𝑥𝑡, 𝑡) is continuously differentiable
and Lipschitz continuous with respect to 𝑥𝑡, i.e., ‖𝑣(𝑥𝑡, 𝑡) − 𝑣(𝑦𝑡, 𝑡)‖2 ≤ 𝐿𝑣‖𝑥𝑡 − 𝑦𝑡‖2. Third, we assume that
𝑅𝜃(𝑥𝑡, 𝑡, 𝑠) is continuously differentiable and its partial derivative with respect to 𝑠 is Lipschitz continuous;
that is, ‖𝜕3𝑅𝜃(𝑥𝑡, 𝑡, 𝑠1) − 𝜕3𝑅𝜃(𝑥𝑡, 𝑡, 𝑠2)‖2 ≤ 𝐿|𝑠1 − 𝑠2|, where 𝐿 is the Lipschitz constant. We first prove the
following lemma:

Lemma. Under the stated assumptions, 𝜕3𝑅𝜃(𝑥𝑡, 𝑡, 𝑠) is uniformly bounded by:

‖𝜕3𝑅𝜃(𝑥𝑡, 𝑡, 𝑠)‖2 ≤ 2
√

𝐿𝛿. (37)

Proof. For brevity, we denote 𝑅𝜃(𝑥𝑡, 𝑡, 𝑠) as 𝑔(𝑠) ∈ R𝑛. We aim to bound ‖𝑔′(𝑠)‖2 given that ‖𝑔(𝑠)‖2 ≤ 𝛿
and ‖𝑔′(𝑠1) − 𝑔′(𝑠2)‖2 ≤ 𝐿|𝑠1 − 𝑠2|. According to the fundamental theorem of calculus, we have:

𝑔(𝑠 + ℎ) − 𝑔(𝑠) =
∫︁ 1

0
𝑔′(𝑠 + 𝜏ℎ)ℎ𝑑𝜏. (38)

We can rewrite the term 𝑔′(𝑠)ℎ as follows:

𝑔′(𝑠)ℎ = 𝑔′(𝑠)ℎ + 𝑔(𝑠 + ℎ) − 𝑔(𝑠) −
∫︁ 1

0
𝑔′(𝑠 + 𝜏ℎ)ℎ𝑑𝜏

= 𝑔(𝑠 + ℎ) − 𝑔(𝑠) −
∫︁ 1

0
(𝑔′(𝑠 + 𝜏ℎ) − 𝑔′(𝑠))ℎ𝑑𝜏.

(39)

Taking the Euclidean norm on both sides and applying the triangle inequality yields:

|ℎ|‖𝑔′(𝑠)‖2 ≤ ‖𝑔(𝑠 + ℎ)‖2 + ‖𝑔(𝑠)‖2 +
⃦⃦⃦⃦∫︁ 1

0
(𝑔′(𝑠 + 𝜏ℎ) − 𝑔′(𝑠))ℎ 𝑑𝜏

⃦⃦⃦⃦
2

. (40)

Using the assumption ‖𝑔(·)‖2 ≤ 𝛿 and the Lipschitz continuity of 𝑔′(𝑠), we can bound the terms using the
triangle inequality for integrals:

|ℎ|‖𝑔′(𝑠)‖2 ≤ 𝛿 + 𝛿 +
∫︁ 1

0
‖𝑔′(𝑠 + 𝜏ℎ) − 𝑔′(𝑠)‖2|ℎ| 𝑑𝜏 (41)

≤ 2𝛿 +
∫︁ 1

0
𝐿|𝜏ℎ||ℎ| 𝑑𝜏 (42)

= 2𝛿 + 𝐿ℎ2
∫︁ 1

0
𝜏 𝑑𝜏 (43)

= 2𝛿 + 𝐿ℎ2

2 . (44)
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Note that this inequality holds for any ℎ ≠ 0. We consider the case where ℎ > 0 to form an upper bound.
Dividing by |ℎ|, we obtain:

‖𝑔′(𝑠)‖2 ≤ 2𝛿

ℎ
+ 𝐿ℎ

2 , ∀ℎ > 0. (45)

To find the tightest bound, we minimize the right-hand side with respect to ℎ. The minimum occurs when
the derivative with respect to ℎ is zero (since the second derivative is positive), yielding:

− 2𝛿

ℎ2 + 𝐿

2 = 0 =⇒ ℎ2 = 4𝛿

𝐿
=⇒ ℎ = 2

√︂
𝛿

𝐿
. (46)

Substituting this optimal ℎ back into the inequality gives:

‖𝑔′(𝑠)‖2 ≤ 2𝛿

2
√︀

𝛿/𝐿
+ 𝐿

2

(︃
2
√︂

𝛿

𝐿

)︃
=

√
𝐿𝛿 +

√
𝐿𝛿 = 2

√
𝐿𝛿. (47)

This concludes the proof of the lemma.

Next, taking the partial derivatives with respect to 𝑠 in Equation 33, we have:

𝜕3𝑓(𝑥𝑡, 𝑡, 𝑠) − 𝜕3𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) = 𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑠), 𝑠, 𝑠) +
∫︁ 𝑠

𝑡

𝜕3𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠)𝑑𝑙. (48)

Using this equation, we can write the ODE residual vector as follows:

𝜕3𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) − 𝑣(𝑓𝜃(𝑥𝑡, 𝑡, 𝑠), 𝑠)

= 𝜕3𝑓(𝑥𝑡, 𝑡, 𝑠) − 𝑣(𝑓𝜃(𝑥𝑡, 𝑡, 𝑠), 𝑠) − 𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑠), 𝑠, 𝑠) −
∫︁ 𝑠

𝑡

𝜕3𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠)𝑑𝑙

= 𝑣(𝑓(𝑥𝑡, 𝑡, 𝑠), 𝑠) − 𝑣(𝑓𝜃(𝑥𝑡, 𝑡, 𝑠), 𝑠) − 𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑠), 𝑠, 𝑠) −
∫︁ 𝑠

𝑡

𝜕3𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠)𝑑𝑙.

(49)

We first use the Lipschitz continuity of 𝑣(𝑥𝑡, 𝑡), along with Equation 36:

‖𝑣(𝑓(𝑥𝑡, 𝑡, 𝑠), 𝑠) − 𝑣(𝑓𝜃(𝑥𝑡, 𝑡, 𝑠), 𝑠)‖2 ≤ 𝐿𝑣‖𝑓(𝑥𝑡, 𝑡, 𝑠) − 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠)‖2 ≤ 𝐿𝑣|𝑠 − 𝑡|𝛿. (50)

Since we have a uniform bound ‖𝑅𝜃(𝑥𝑡, 𝑡, 𝑠)‖2 ≤ 𝛿, it follows that:

‖𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑠), 𝑠, 𝑠)‖2 ≤ 𝛿. (51)

Finally, for the integral term, using the triangle inequality and the lemma, we have:⃦⃦⃦⃦∫︁ 𝑠

𝑡

𝜕3𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠)𝑑𝑙

⃦⃦⃦⃦
2

≤
⃒⃒⃒⃒∫︁ 𝑠

𝑡

‖𝜕3𝑅𝜃(𝑓(𝑥𝑡, 𝑡, 𝑙), 𝑙, 𝑠)‖2𝑑𝑙

⃒⃒⃒⃒
≤
⃒⃒⃒⃒∫︁ 𝑡

𝑠

2
√

𝐿𝛿𝑑𝑙

⃒⃒⃒⃒
= 2|𝑠 − 𝑡|

√
𝐿𝛿.

(52)

Combining these three terms, we obtain:

‖𝜕3𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) − 𝑣(𝑓𝜃(𝑥𝑡, 𝑡, 𝑠), 𝑠)‖2 ≤ 𝐿𝑣|𝑠 − 𝑡|𝛿 + 𝛿 + 2|𝑠 − 𝑡|
√

𝐿𝛿 = 𝑂(
√

𝛿). (53)

We have theoretically proved that the ODE error ‖𝜕3𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) − 𝑣(𝑓𝜃(𝑥𝑡, 𝑡, 𝑠), 𝑠)‖2 of our model 𝑓𝜃(𝑥𝑡, 𝑡, 𝑠) is
bounded by the PDE error ‖𝑅𝜃(𝑥𝑡, 𝑡, 𝑠)‖2, where 𝛿 = 𝑒max + 𝐻|𝑠 − 𝑡|𝑟(𝑘, 𝐾). During training, the training
error 𝑒max is minimized and the schedule function 𝑟(𝑘, 𝐾) also decreases to a small value. Thus, we conclude
that our model implicitly minimizes the ODE error during training with a theoretical guarantee.
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