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Abstract
Speech Language Models (SpeechLMs) are Large Language
Models (LLMs) that can directly process both speech input
and speech output, establishing a more natural framework
for human-machine interaction. Traditional approaches em-
ploy speech encoders with vector-quantization modules to
discretize continuous speech signals into tokens, allowing
LLMs to unify the modeling of text and speech tokens. How-
ever, the inherent conflict between speech’s continuous nature
and text’s discrete essence, coupled with speech data’s sub-
stantially lower information density when compared to text
data, poses significant challenges for these models. In this
work, we propose a novel model and training methodology
to enable joint generation of discrete and continuous tokens.
Our autoregressive model features a bi-level whole-part ar-
chitecture comprising a large transformer for long-range de-
pendency modeling and a small diffusion transformer that
generates continuous speech tokens using local information.
Experimental results demonstrate that the proposed model
achieves performance comparable to discrete token-based
SpeechLMs while requiring fewer training tokens.

1 Introduction
The emergence of large language models (LLMs) such as
GPT-4 (Achiam et al. 2023) has fundamentally transformed
natural language processing through remarkable emergent
capabilities, including instruction following, logical reason-
ing, and few-shot learning (Touvron et al. 2023; Yang et al.
2024a; Jiang et al. 2024; Jaech et al. 2024). While these
text-based models demonstrate unprecedented language un-
derstanding, extending their capabilities to voice interac-
tions remains challenging. Conventional systems typically
employ a cascaded architecture where an automatic speech
recognition (ASR) model first converts speech input to text,
then a text-based LLM generates textual responses, and fi-
nally a text-to-speech (TTS) synthesis model converts the
responses back to speech outputs. However, as noted by
Défossez et al. (2024) and Zeng et al. (2024a), this modu-
lar approach suffers from inherent information loss during
modality conversions, particularly in preserving prosodic
features and emotional nuances. The sequential processing
pipeline also introduces cumulative latency that degrades
real-time interaction quality.
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Recent advancements in end-to-end speech language
models (SpeechLMs) aim to address these limitations
through direct speech tokenization technologies. Early work
by Lakhotia et al. (2021) proposed unsupervised learning
on speech corpora using discrete tokens, with subsequent
improvements achieved through textual LLM warm initial-
ization (Hassid et al. 2023) and large-scale pretraining with
interleaved speech-text data (Nguyen et al. 2025; Défossez
et al. 2024; Zeng et al. 2024a). Contemporary SpeechLM
architectures typically employ speech encoders with vector-
quantization modules to discretize continuous speech sig-
nals into tokens, enabling joint generation of text and speech
tokens through LLMs. These speech tokens generally fall
into two categories: (1) acoustic tokens generated by neural
codecs for high-fidelity audio reconstruction at low bitrates,
and (2) semantic tokens extracted from features learned
through self-supervised (Hsu et al. 2021; Chung et al. 2021)
or supervised objectives (Du et al. 2024; Zeng et al. 2024a).

However, two critical challenges persist in these token-
based approaches due to inherent modality discrepancies.
First, due to speech’s continuous nature, the vector quanti-
zation process not only introduces discretization errors, but
also cuts off gradient information, which makes the speech
encoder training more challenging than its continuous coun-
terpart. Second, the substantially lower information density
of speech signals compared to text leads to significantly
more speech tokens required for equivalent semantic con-
tent. This token inflation not only reduces training efficiency
but also adversely impacts model performance through ex-
tended sequence lengths.

The fundamental crux behind these challenges is the dras-
tic difference between the sparse, continuous speech signal
and the dense, discrete text. Therefore, our research question
is: Can we design a speech language model that respects the
continuous nature of speech, yet still fits into the mainstream
discrete autoregressive text LLM architectures?

To address these challenges, we propose Bi-level Speech
Language Model (BSLM), a novel autoregressive frame-
work with unified text-speech generation capabilities. Our
architecture employs a bi-level hierarchical structure: A pri-
mary LLM captures long-range cross-modal dependencies
and generates text tokens, while a secondary diffusion trans-
former with fewer parameters produces continuous speech
tokens using local LLM latents and adjacent speech context.



Additionally, our model supports grouped token input and
generation mechanism, which enables efficient processing
of closely-related speech tokens in clustered units. This ap-
proach significantly reduces the token count processed by
the primary LLM while maintaining speech generation qual-
ity. Our method achieves simultaneous modeling of discrete
text tokens and continuous speech representations, effec-
tively bridging the information gap between speech and text
modalities. Experimental results demonstrate that our model
achieves competitive performance on speech language mod-
eling tasks while requiring fewer training tokens compared
to existing discrete token-based SpeechLMs, establishing a
new method for unified speech-text language modeling.

2 Related Work
2.1 Multimodal Large Language Models
Recent advances in multimodal large language models
(LLMs) primarily follow two paradigms. For multimodal
understanding, mainstream approaches align visual and au-
dio features with text inputs via lightweight adapters, em-
ploying pretrained encoders like Whisper (Radford et al.
2023) and BEATs (Chen et al. 2022) for audio, or CLIP-
pretrained (Radford et al. 2021) vision transformers (Doso-
vitskiy et al. 2020) used in LLaVA (Liu et al. 2023) and
BLIP-2 (Li et al. 2023) for vision tasks. However, these
models remain limited to text-only outputs, as generating
continuous-value images and audio falls beyond their ca-
pabilities. To enable multimodal generation, methods like
SpeechGPT (Zhang et al. 2023a) and AnyGPT (Zhan et al.
2024) tokenize non-text modalities into discrete units in-
tegrated into LLM vocabularies. Despite progress, chal-
lenges persist in effectively transferring LLM knowledge
across modalities to enhance generalization and instruction-
following capabilities.

2.2 Speech Language Modeling
The evolution of speech language modeling has centered
on discrete audio representations and hierarchical architec-
tures. Lakhotia et al. (2021) proposed the Generative Spoken
Language Modeling (GSLM) framework, consisting of three
main modules: a speech tokenizer, a speech language model,
and a vocoder. Subsequent studies have expanded upon this
foundation. AudioLM (Borsos et al. 2023) employs dual dis-
crete speech token representations - phonetic tokens (Chung
et al. 2021) and acoustic tokens (Zeghidour et al. 2021)
- to respectively model coarse and fine-grained speech in-
formation. TWIST (Hassid et al. 2023) demonstrated that
while modality gaps between speech and text persist, fine-
tuning a textual language model on speech data yields su-
perior performance compared to random cold-initialization
of SpeechLMs. SpeechGPT (Zhang et al. 2023a) enhanced
SpeechLM capabilities through multimodal training incor-
porating ASR, TTS, and chain-of-modality question an-
swering tasks. Recent developments include VoxtLM (Maiti
et al. 2024) and SUTLM (Chou et al. 2023), which em-
ploy joint training on text and speech through ASR, TTS,
and speech/text continuation tasks, while SpiritLM (Nguyen
et al. 2025) achieves performance improvements through

training on interleaved speech-text data. A critical chal-
lenge in SpeechLMs remains the excessive length of au-
dio token sequences, which complicates long-context mod-
eling and slows inference. Moshi (Défossez et al. 2024) and
GLM-4-Voice (Zeng et al. 2024a) address this through novel
12.5Hz speech tokenizers and high-fidelity speech decoders.
Moshi employs residual vector quantization (RVQ) to tok-
enize speech data, whereas GLM-4-Voice utilizes only a sin-
gle codebook in its quantization process. Additionally, they
significantly scale up data usage compared to previous re-
search to alleviate the data lack issue in speechLMs, GLM-
4-Voice adopts a text-to-token model that directly converts
text into corresponding speech tokens to generate synthetic
speech-text interleaved data.

2.3 Flow Matching Models
In recent years, the development of flow matching method-
ologies has led to significant progress in continuous-time
generative modeling. Building upon the foundational frame-
work of Flow Matching (FM) introduced by Lipman et al.
(2022), which is closely related to the Rectified Flow mod-
els proposed by Liu, Gong, and Liu (2022), researchers have
demonstrated its efficacy in learning Ordinary Differential
Equations (ODEs) through the conditional flow matching
(CFM) objective. This approach circumvents the computa-
tional complexities inherent in traditional score-based dif-
fusion models and numerical ODE solvers for Continuous
Normalizing Flows (CNFs) (Chen et al. 2018), establish-
ing a simplified velocity field regression framework. Subse-
quent innovations by Tong et al. (2023) and Pooladian et al.
(2023) further integrate optimal transport (OT) principles
to enhance FM’s performance and efficiency, enabling the
construction of ODEs with minimally varying vector fields
during source-to-target distribution transport and improv-
ing numerical stability. The impact spans diverse generation
tasks: Esser et al. (2024) demonstrate that flow matching
models equipped with powerful transformer-based velocity
predictors can efficiently generate high-resolution images in
text-to-image synthesis; Zheng et al. (2024) and Yang et al.
(2024b) show remarkable cross-modal generalization capa-
bilities through OpenSora and CogVideoX in text-to-video
generation; while Cheng et al. (2024) and Wang et al. (2024)
extend the framework to audio generation via MMAudio and
Frieren for text-to-audio and video-to-audio tasks.

3 Method
3.1 Speech Encoder and Decoder
We begin by introducing our speech encoder and decoder
architecture. The system leverages Whisper (Radford et al.
2023), a state-of-the-art model for automatic speech recog-
nition (ASR) and speech translation. Our implementation
utilizes the whisper-large-v3 variant, which was pretrained
on 1 million hours of weakly labeled audio and 4 million
hours of pseudo-labeled audio generated by whisper-large-
v2. The whisper encoder processes 16kHz audio-derived
mel-spectrograms with a hop size of 160, yielding an initial
frame rate of 100Hz. Through its 1D convolutional layers,



Whisper Encoder

DownSampling Block × 2

Whisper Decoder

UpSampling Block × 2

Reconstruction Transformer

Transcription

Flow Matching Refiner

BigVGAN v2 Decoder Transformer Block
ResNet1D

Transformer Block
ResNet1D

Transformer Block
ResNet1D

Condition

Xt

μ

t

×Nup

×Nmid

×Ndown

V(Xt , t)

Timestep
Embedding

Mel-spectrogram

Grouped Continuous 
Speech Tokens

Waveform

Figure 1: The structure of our speech encoder and decoder.

the encoder downsamples this input to 50Hz while produc-
ing latent features at the same rate.

The architecture then employs two downsampling blocks
followed by two upsampling blocks, each with a ratio
of 2, to compress the 50Hz features into 64-dimensional
12.5Hz continuous speech tokens and subsequently de-
compress them back to 50Hz. These processed features
serve dual purposes: the whisper decoder utilizes them
through cross-attention mechanisms for transcription pre-
diction, while a dedicated reconstruction transformer gen-
erates mel-spectrograms for speech synthesis.

Our reconstruction transformer features two key enhance-
ments: Rotary Positional Embedding (RoPE) (Su et al. 2024)
and SwiGLU feed-forward networks (Shazeer 2020). To ac-
commodate the BigVGAN vocoder (Lee et al. 2022) which
requires 93.75Hz mel-spectrograms from 24kHz audio (hop
size 256), the reconstruction transformer upsamples the
50Hz features to 100Hz during forward propagation and lin-
early interpolate them to the target 93.75Hz resolution.

The system further implements a flow matching model
for mel-spectrogram refinement. Our velocity prediction
network architecture concatenates coarse mel-spectrograms
with noisy inputs along the frequency dimension to esti-
mate velocity fields. Through comparative experiments with
closely parameterized models, we found that UNet-based ar-
chitectures (Ronneberger, Fischer, and Brox 2015) outper-
form diffusion transformers (Peebles and Xie 2023) in this
refinement task. We hypothesize this performance advan-
tage stems from UNet’s superior handling of local features
through its 1D convolutional layers, which proves more ef-
fective than the global attention mechanisms in diffusion
transformers for this specific application.

We illustrate the structure of our speech encoder and de-
coder in Figure 1. Further architectural and implementation
details are provided in Appendix A.

3.2 Bi-Level Speech Language Model
We now formally present our method using mathematical
notation. For traditional discrete modeling, the conditional
distribution is formulated via softmax and neural networks:

Pθ(xT |x1, x2, . . . , xT−1)

= softmax(W ·NNθ(x1, x2, . . . , xT−1) + b),
(1)

where W,b represent the language model head parameters
and NNθ denotes the LLM. This formulation enables vari-
ous sampling methods including temperature sampling, top-
k sampling, and top-p sampling to be applied to the logits
during inference. In our model, xT can represent either dis-
crete text tokens or grouped continuous speech tokens with
dimensions of group-size × single-token dimensions. The
model dynamically predicts whether to generate a text to-
ken or grouped speech tokens at each time step through a
lightweight multi-layer perceptron (MLP) classifier that es-
timates the probability from latent features. For text genera-
tion, we employ the softmax function to model the distribu-
tion, whereas for speech generation, we utilize flow match-
ing (Lipman et al. 2022) framework to model the data distri-
bution. Formally,

Pθ(xT | x1, . . . , xT−1)

=

{
Psoftmax(xT | x1, x2, . . . , xT−1) w. p. p̂,
PFM(xT | x1, x2, . . . , xT−1) w. p. 1− p̂,

(2)

where p̂ = MLPθ(NNθ(x1, x2, . . . , xT−1)) represents the
predicted probability, and Psoftmax is defined in eq. (1). We
denote vector variables and matrices in boldface, while
scalar variables and variables that can be either scalar or
vector remain in regular format. For continuous speech to-
kens, the modeling becomes more intricate. As autoregres-
sive transformers excel at capturing long-term semantic de-
pendencies, while flow matching models efficiently generate
fine-grained continuous speech with higher temporal resolu-



tion, we therefore model PFM as:

PFM(xT | x1, . . . , xT−1) = ODESOLVE(N (0, I),

vθ(xT−K , . . . ,xT−1,NNθ(x1, . . . ,xT−1),xT,t, t)),
(3)

where ODESOLVE denotes the process of randomly sam-
pling noise from a standard normal distribution at t =
0, then solving the velocity ordinary differential equation
(ODE) defined by the velocity predictor vθ until t = 1. Fol-
lowing the flow matching framework (Lipman et al. 2022),
we employ a straight-line trajectory for noise addition to
clean grouped speech tokens:

xT,t = txT + (1− t)ϵ, ϵ ∼ N (0, I), t ∈ [0, 1] (4)

This corresponds to a mean squared flow matching loss:

min
θ

∥vθ(xT−K , . . . ,xT−1,

NNθ(x1, x2, . . . ,xT−1),xT,t, t)− (xT − ϵ)∥22
(5)

The hyperparameter K determines the number of preceding
speech token groups provided to the velocity network. For
initial speech token groups without historical context, we ap-
ply zero-padding to these conditional variables. The velocity
network does not access previous text LLM latent represen-
tations in this boundary situation. The continuous nature of
speech signals ensures that adjacent preceding tokens con-
tain valuable information for the denoising process. Here,
NNθ(x1, x2, . . . , xT−1) denotes the latent vector generated
by the language model from previous variables. This archi-
tecture establishes a bi-level language model capable of joint
modeling of discrete and continuous tokens. The primary
language model captures long-range cross-modal dependen-
cies and produces text tokens, while the secondary veloc-
ity network – with fewer parameters – generates continu-
ous speech tokens using both local language model latents
and neighboring speech tokens. Furthermore, the model sup-
ports grouped token processing, enabling efficient handling
of correlated speech tokens in clustered units and reducing
the token count processed by the language model.

In our implementation, we model NNθ using the Qwen3-
4B (Yang et al. 2025) large language model, while the veloc-
ity prediction network is implemented through a diffusion
transformer. We group two speech tokens while setting the
number of previous speech token groups K to two. A speech
adaptor constructed with two SwiGLU blocks processes the
grouped speech tokens for the LLM. During the inference
process, speech and text inputs are fed to the speech adaptor
and text embedding layers respectively, after which the LLM
produces a latent vector from the combined input. When the
MLP classifier predicts a high probability of generating a
text token, the logits are computed from the latent vector
and standard discrete LLM sampling methods are applied
for text generation. Otherwise, the secondary flow matching
model is activated, generating grouped continuous speech
tokens through a 40-step velocity ODE solving process. The
generation process continues until an end-of-text token is
produced. Figure 2 illustrates the structure of our speech lan-
guage model. For detailed specifications of the model archi-
tecture, please refer to Appendix B.

3.3 Flow-DPO
The efficiency of preference optimization has been demon-
strated for both LLMs and vision generative models
(Ouyang et al. 2022; Rafailov et al. 2023; Liu et al. 2025).
Our model can also perform direct preference optimization
(DPO) training on grouped speech tokens, which represent
continuous rather than discrete signals.

In traditional DPO settings for discrete domains, given
pairwise preferences {y,xw,xl} where xw ≻ xl, the objec-
tive maximizes the likelihood ratio of preferred versus dis-
preferred outputs under a model πθ relative to a reference
model πref. The loss function is formulated as:

LDPO =

−E
[
log σ

(
β log

πθ(xw|y)
πref(xw|y)

− β log
πθ(xl|y)
πref(xl|y)

)]
,

(6)

where σ denotes the sigmoid function. This approach by-
passes explicit reward modeling by leveraging the Bradley-
Terry preference model (Bradley and Terry 1952). For con-
tinuous data like speech, however, direct density ratio esti-
mation becomes intractable due to the high-dimensional na-
ture of the output space. Flow-DPO (Liu et al. 2025) ad-
dresses this by reinterpreting the DPO objective through the
lens of flow matching dynamics.

Based on the derivation of Diffusion-DPO (Wallace et al.
2024), Liu et al. (2025) propose the following Flow-DPO
loss LFD, which directly optimizes the velocity field to sat-
isfy preferences:

−E
[
log σ

(
−βt

2

(
∥vw − vθ(x

w
t , t)∥2 − ∥vw − vref(x

w
t , t)∥2

−
(
∥vl − vθ(x

l
t, t)∥2 − ∥vl − vref(x

l
t, t)∥2

)))]
,

(7)

where βt is simply set as a constant. The expectation is taken
over preference data samples ({xw

0 ,x
l
0} ∼ D) and the noise

schedule t. The Gaussian noise used to perturb the data sam-
ples is shared, with velocity vectors vw and vl are computed
from clean data xw

0 ,x
l
0 and the shared Gaussian noise ac-

cording to flow matching principles. Since our model uses
a flow matching method to generate grouped continuous
speech tokens, we can adopt Flow-DPO in a similar way.
The only discrepancy is that our diffusion transformer is
conditioned on LLM latents and previous grouped speech
tokens; we just need to incorporate these conditions into the
velocity prediction network in eq. (7) to train our model.

4 Experiments
4.1 Datasets and Training Process
We collected various datasets to train our speech encoder,
speech decoder and speech language model. Specifically,
about 180k hours English speech data are collected from
LibriSpeech (Panayotov et al. 2015), Libriheavy (Kang et al.
2024), Emilia (He et al. 2024), Peoples Speech (Galvez et al.
2021) , GigaSpeech (Chen et al. 2021), MLS (Pratap et al.
2020) and Vox Populi (Wang et al. 2021) datasets.
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Figure 2: The structure of our Bi-Level Speech-Language Model.

The training loss function of our speech encoder and
decoder combines three components: the sequence-to-
sequence ASR loss from the whisper decoder, the mean
square error between reconstructed and ground truth mel-
spectrograms, and the mean square velocity loss of the flow
matching mel-spectrogram refiner, with the latter two terms
scaled by coefficients 1.5 and 5 respectively. As the whisper
encoder and decoder utilize pretrained initialization while
other components are randomly initialized, we employ three
AdamW optimizers with betas (0.9, 0.98) for parameter up-
dates. The first optimizer applies a constant learning rate
of 1e-5 and 0.05 weight decay specifically for the whis-
per encoder-decoder parameters. The second optimizer man-
ages the upsampling blocks, downsampling blocks, and re-
construction transformer with a cosine-decayed learning rate
starting at 2e-4 and decaying to 2e-5 alongside 0.025 weight
decay. The third optimizer exclusively handles the velocity
network parameters using a cosine-decayed learning rate ini-
tialized at 4e-4 and decaying to 2e-5 with 0.025 weight de-
cay. Our model is trained with a batch size of 128 for 250k
steps on 8 NVIDIA H100 GPUs (80G memory each), after
which we freeze all components except the flow matching
mel-spectrogram refiner and continue training it for an addi-
tional 100k steps to improve performance.

For SpeechLM training, we expand synthetic data us-
ing KokoroTTS (Hexgrad 2025). Specifically, we generate
40k hours of speech from TinyStories (Eldan and Li 2023)
and an additional 100k hours of longer-duration speech us-
ing FineWeb-Edu (HuggingFaceFW 2024). Unlike GLM-
4-Voice (Zeng et al. 2024a), which synthesizes speech to-
kens via Poisson-distributed spans (λ = 10) with text ratio
η = 0.3, our approach leverages KokoroTTS’s sentence-
level timestamps from concatenated short audio segments.
We directly replace random text segments with 30% proba-
bility in FineWeb-Edu’s 100k-hour synthetic speech to pro-

duce 10B interleaved speech-text pairs. For speech-only
data, combining encoder/decoder training data and TinyS-
tories synthesis yields 220k hours audios. Text data com-
prises 50B tokens from FineWeb-Edu, excluding texts used
for interleaved synthesis. Following (Nguyen et al. 2025),
we balance all three data types during training. We train
the SpeechLM for 50B tokens, which is corresponding to
about 71B original text and speech tokens since we group
two speech tokens together.

For DPO dataset construction, we generate positive and
negative samples with the SWAG dataset (Zellers et al.
2018), synthesizing a corpus totaling under 400 hours. In
SWAG dataset, each initial sentence is followed by one cor-
rect and three incorrect continuations, we synthesize speech
DPO samples as follows: positive samples from correct con-
tinuations and negative samples from incorrect ones. Using
KokoroTTS (Hexgrad 2025), we collect three data config-
urations: 1) both sentences in speech modality; 2) speech-
text interleaved sequences starting with speech; and 3) inter-
leaved sequences starting with text. During training, DPO
loss computation focuses on second-sentence predictions
conditioned on the first sentence. We apply discrete DPO
loss for text continuations and flow-DPO loss for speech
continuations. These three data types are uniformly sampled
during training.

We train the SpeechLM on 8 NVIDIA H100 GPUs us-
ing a 256 batch size with AdamW optimization. The initial
learning rate is 5e-4, decayed to 5e-5 via cosine scheduler.
For the first 5% of training tokens, we freeze the LLM while
updating only the speech adaptor and diffusion transformer;
for the subsequent 5% tokens, we update exclusively the
LLM. Experimental results indicate that this phased adapta-
tion notably improves training efficiency. Finally, the flow-
DPO phase maintains a 5e-5 learning rate with training lim-
ited to 30 million tokens.



Model Frame Rate WER(↓) VisQOL(↑) MOSNet(↑)
Ground Truth – 4.62 – 3.27
RVQGAN 75Hz – 1.74 2.74
SemantiCodec 50Hz – 2.43 3.12
SpeechTokenizer∗ 50Hz 9.97 1.53 2.67
SpeechTokenizer 50Hz 6.32 3.07 3.10
Spirit-Base 25Hz 11.66 – –
Spirit-Expressive 38.5Hz 10.60 – –
Moshi (Mimi) 12.5Hz 8.36 2.82 2.89
GLM-4-Voice 12.5Hz 8.43 2.52 3.39
Ours - UNet 12.5Hz 6.13 3.08 3.14
Ours - Transformer 12.5Hz 6.95 2.81 3.06

Table 1: Speech Reconstruction Results: We evaluate our models’ content preservation ability and speech reconstruction quality
using Word Error Rate (WER), VisQOL (Hines et al. 2015), and MOSNet (Lo et al. 2019), respectively. Baseline results are
derived from (Zeng et al. 2024a,b; Défossez et al. 2024).∗SpeechTokenizer is a lower-bitrate version with only 3 RVQ levels
tested in Moshi (Défossez et al. 2024).

4.2 Evaluation Metrics

Following Défossez et al. (2024); Zeng et al. (2024a), we
conduct comprehensive evaluations of our speech encoder
and decoder’s content preservation capability and recon-
struction quality using the LibriSpeech dataset. To assess
content preservation, we calculate the Word Error Rate
(WER) by comparing ground truth transcripts with auto-
matic speech recognition outputs generated through the ASR
model from Nguyen et al. (2023). For evaluating reconstruc-
tion quality, we employ two complementary metrics: the
VisQOL score (Hines et al. 2015) for perceptual similarity
assessment between original and reconstructed audio, along
with MOSNet (Lo et al. 2019) for predicting mean opinion
scores of reconstructed audio quality.

Regarding our speech language model evaluation, we
adopt four established benchmarks following Nguyen et al.
(2025): sWUGGY, sBLIMP, Topic-StoryCloze, and Sto-
ryCloze. These tasks systematically evaluate language mod-
eling capabilities through contrastive likelihood assess-
ments, where models must distinguish correct continu-
ations from distractors. Specifically, sWUGGY (Nguyen
et al. 2020) probes lexical knowledge through nonce word
paradigms, while sBLIMP examines grammatical under-
standing through minimal syntactic pairs. For narrative com-
prehension evaluation, we utilize spoken adaptations of Sto-
ryCloze and Topic-StoryCloze as described in Hassid et al.
(2023); Nguyen et al. (2025). The StoryCloze benchmark
tests high-level semantic reasoning by requiring models to
identify coherent story continuations after processing narra-
tive beginnings, with three multimodal evaluation settings:
speech-to-speech continuation (S), text-to-speech continu-
ation (T→S), and speech-to-text continuation (S→T). As
for the Topic-StoryCloze task, negative suffixes are sampled
from distinct semantic categories to evaluate the model’s ca-
pacity for holistic semantic comprehension.

During evaluation, we applied token count normalization
to the log-likelihood following Nguyen et al. (2025). Be-
sides, we need to emphasize that while the log-likelihood of

continuous speech tokens can be estimated via the instanta-
neous change of variables formula proposed by Chen et al.
(2018), the continuous log-likelihood (derived from proba-
bility density functions) and discrete log-likelihood (calcu-
lated through probability values) are not directly compara-
ble. Therefore, perplexity-based evaluation metrics are ex-
cluded from our experiments. For further details regarding
the instantaneous change of variables formula and continu-
ous log-likelihood estimation, please refer to Appendix C.

4.3 Speech Encoder and Decoder
We evaluate our speech encoder and decoder with two dif-
ferent kinds of mel-spectrogram refining networks on the
LibriSpeech dataset (Panayotov et al. 2015). Experimental
results show that UNet performs better than the diffusion
transformer for our model, which can be attributed to the
fact that given a coarse reconstructed mel-spectrogram, the
refining task requires more local rather than global process-
ing. The UNet with 1D convolutional blocks proves more
suitable for this task.

When comparing with other discrete token-based mod-
els, we consider RVQGAN (Kumar et al. 2023), Seman-
ticCodec (Liu et al. 2024), Speech Tokenizer (Zhang et al.
2023b), and the speech tokenizers in SpiritLM (Nguyen
et al. 2025), Moshi (Défossez et al. 2024), and GLM-4-
Voice (Zeng et al. 2024a). Experimental results demonstrate
that our speech encoder and decoder can effectively retain
semantic information in speech signals while maintaining
reconstruction quality comparable to advanced discrete to-
kenizers and their corresponding decoders. Notably, while
GLM-4-Voice achieves a high MOSNet score of 3.39, the
ground truth MOSNet score is only 3.27. This discrepancy
suggests its tokenizer and speech decoder may not faith-
fully reconstruct input speech, a conclusion supported by its
lower VisQOL score of 2.52. The VisQOL score is com-
puted using both ground truth and reconstructed speech,
whereas MOSNet only predicts the mean opinion score for
reconstructed audio. Additionally, the training process for
our continuous speech encoder and decoder proves simpler



Model WUGGY(↑) BLIMP(↑) Topic-StoryCloze(↑) StoryCloze(↑)

S S S T→S S→T S T→S S→T

GSLM 64.8 54.2 66.6 ∅ ∅ 53.3 ∅ ∅
VoxtLM 66.1 57.1 – – – – – –
TWIST 73.9 59.0 76.4 ∅ ∅ 55.4 ∅ ∅
SpiritLM Base 69.0 58.3 82.9 72.7 88.6 61.0 59.5 64.6
SpiritLM Expr. 65.0 54.2 75.4 61.6 73.2 56.9 54.6 58.8
Moshi 72.6 58.8 83.0 – – 60.8 – –
GLM-4-Voice – – 82.9 85.0 93.6 62.4 63.3 76.3
BSLM 74.1 60.2 84.1 81.1 93.8 61.3 60.9 73.0

Table 2: Speech language modeling results. Where - denotes scores that are not publicly accessible, and ∅ represents tasks that
are not supported by the corresponding model.

Models GSLM VoxtLM TWIST SpiritLM Moshi GLM-4-Voice BSLM

Parameters 100M 1.3B 7B 7B 7B 9B 4B
Training Tokens 1B – 36B 100B ∼720B ∼1T 50B∗

Table 3: Model configurations. Training token quantities are estimated based on available data. ∗Note that our model clusters
adjacent speech tokens to reduce token counts for the LLM. When calculated at the original 12.5Hz sampling rate, the total
reaches approximately 71B text and speech tokens.

than their vector-quantized counterparts, as we eliminate the
need for RVQ methods, exponential-moving average main-
tenance for codebooks, or commitment loss constraints on
codebook vectors.

4.4 Bi-Level Speech Language Model
For evaluating our model’s speech language modeling capa-
bilities, we select several baseline models including GSLM
(Lakhotia et al. 2021), VoxtLM (Maiti et al. 2024), TWIST-
7B (Hassid et al. 2023), SpiritLM (Nguyen et al. 2025),
Moshi (Défossez et al. 2024), and GLM-4-Voice (Zeng et al.
2024a). Experimental results demonstrate that our model
achieves competitive performance across four evaluation
metrics despite using significantly fewer training tokens,
thereby validating the effectiveness of both our joint mod-
eling architecture and token grouping methodology.

However, our findings simultaneously reveal the contin-
ued importance of model and dataset scaling for optimal
performance. Notably, GLM-4-Voice – with 9B parame-
ters and training on approximately 1T tokens – maintains
higher performance on several metrics, particularly the Sto-
ryCloze benchmark, even as our method demonstrates im-
proved learning efficiency. Current computational resource
constraints prevent us from pursuing large-scale training ex-
periments, leaving this direction for future research.

4.5 Ablation Study
To validate the effectiveness of our design and hyperparame-
ter selections, we conducted comprehensive ablation studies
constrained by computational resources. Given these limi-
tations, we determined critical hyperparameters (group size
and number of previous groups fed to the diffusion trans-

former) using a smaller 0.6B model that requires less train-
ing overhead. Our key findings reveal:

1. Synthetic speech-text interleaving generation using
Poisson-distributed span lengths (λ = 10) with total
length ratio η = 0.3 (following GLM-4-Voice (Zeng
et al. 2024a)) underperforms our sentence-level seg-
mentation approach for our model. We hypothesize this
degradation stems from the Poisson strategy creating nu-
merous short segments without clear modality transition
signals, whereas our sentence-boundary interleaving pre-
serves natural semantic continuity through line breaks.

2. Both group size and historical group count exhibit non-
monotonic impacts on model performance, with opti-
mal performance achieved at moderate values. This phe-
nomenon can be explained through dual mechanisms:
(a) While larger group sizes expose the LLM to longer
speech token sequences during training, excessive sizes
impair temporal resolution sensitivity; (b) Providing
more historical groups facilitates generation continuity
but accelerates error accumulation from autoregressive
predictions in previous steps.

3. Following established practices (Xie and Wu 2024a,b),
our implementation benefits significantly from separate
pretraining of the speech adaptor, diffusion transformer,
and LLM components prior to joint end-to-end optimiza-
tion. This phased training strategy is more stable and ef-
ficient compared to pure joint training approaches.

5 Conclusion
In this study, we introduce a novel approach to address
the challenges in unified speech-text language modeling by
proposing a novel architecture that bridges the modality gap



Model WUGGY(↑) BLIMP(↑) Topic-StoryCloze(↑) StoryCloze(↑)

S S S T→S S→T S T→S S→T

BSLM 74.1 60.2 84.1 81.1 93.8 61.3 60.9 73.0
Poisson Data
Interleaving 72.9 58.6 82.7 80.2 92.9 60.8 60.3 72.7

BSLM-0.6B 65.6 57.6 75.9 70.7 80.3 56.2 55.8 60.5

Group Size = 1 65.1 57.4 73.7 69.8 79.5 55.9 55.6 60.2
Group Size = 3 64.7 57.1 73.9 70.0 79.3 56.3 55.4 60.0

Previous = 1 65.2 57.0 75.2 70.3 79.9 55.6 55.3 60.1
Previous = 3 65.4 57.5 75.5 70.8 80.1 56.0 55.7 60.5

No Adapting
Training Stage 64.3 56.9 73.3 69.2 79.3 55.4 54.9 59.7

Table 4: Ablation study results for 4B model and 0.6B model.

between discrete text tokens and continuous speech repre-
sentations. Our bi-level hierarchical framework combines
the strengths of autoregressive transformers for global se-
mantic modeling and diffusion transformers for local con-
tinuous token generation, effectively resolving the con-
flict between speech’s continuous nature and text’s discrete
essence. By employing grouped token processing and local-
ized speech generation through the diffusion component, our
model achieves improvements in training efficiency while
maintaining competitive performance compared to conven-
tional discrete token-based SpeechLMs. Experimental re-
sults demonstrate that our model achieves comparable per-
formance to discrete token-based SpeechLMs with fewer
training tokens, while the proposed architecture effectively
reduces token sequence lengths through a speech token
grouping mechanism without compromising output quality.
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Supplementary Appendix
A Speech Encoder and Decoder

Here we present the architectural details of our speech en-
coder and decoder components.

For the Whisper encoder and decoder (Radford et al.
2023), we retain the original configuration from whisper-
large-v3. The downsampling block consists of a 1D convo-
lutional layer with stride parameter 2 for 2× downsampling,
followed by two transformer blocks incorporating Rotary
Position Embedding (RoPE) (Su et al. 2024) and SwiGLU
blocks with an MLP ratio of 8

3 . The upsampling block first
applies linear interpolation for feature expansion, then pro-
cesses the upsampled tensor through two identical trans-
former blocks for refinement. Between the downsampling
and upsampling blocks, a linear layer projects latent vectors
into 64-dimensional continuous speech tokens at 12.5Hz,
followed by another linear layer that converts these tokens
back into higher-dimensional latent vectors. Both downsam-
pling and upsampling blocks employ transformer layers with
784-dimensional hidden states and 6 attention heads. The
total parameter count for these components reaches approx-
imately 63M.

The reconstruction transformer shares the architectural
structure of the transformer blocks used in downsam-
pling/upsampling operations, but with modified hyperpa-
rameters: a hidden dimension of 1152 and 9 attention
heads. Building upon Whisper’s encoder architecture, which
achieves 2× downsampling of mel-spectrograms through
convolutional layers prior to transformer processing, our re-
construction transformer first processes 50Hz latent repre-
sentations through 20 initial layers. Subsequently, we per-
form 2× upsampling via linear interpolation, followed by
4 subsequent transformer blocks that refine the resulting
100Hz latents. The final processing stage applies linear in-
terpolation with a 0.9375 scaling factor coupled with a
linear projection layer, ultimately producing 93.75Hz mel-
spectrograms with 100 frequency bands for waveform syn-
thesis using the BigVGAN vocoder. The reconstruction
transformer has 386M parameters in total.

In our investigation of velocity networks for flow match-
ing refinement, we conducted comparative studies between
two model architectures with approximately 32M parame-
ters each. The first architecture employs a 12-layer diffu-
sion transformer (Peebles and Xie 2023), where each layer
features: (1) a 384-dimensional hidden state with 6 atten-
tion heads, (2) Rotary Position Embedding (RoPE) (Su
et al. 2024), and SwiGLU blocks using an MLP ratio of 8

3 .
The second architecture implements a modified UNet (Ron-
neberger, Fischer, and Brox 2015) with symmetric structure:
3 blocks in both downsampling/upsampling pathways and 4
blocks in the middle section. The middle section implements
feature compression through 2× downsampling. Each block

contains two sequential components: (1) one 1D convolu-
tional residual block (512 channels, kernel size 3, GELU ac-
tivation), followed by (2) an attention mechanism for global
feature integration, configured with a hidden dimension of
512 and 8 attention heads. The time embedding is added to
the latents along frequency dimension in the residual blocks.

During training, we process 30-second audio clips cor-
responding to 3000-frame mel-spectrograms at 100Hz. For
clips shorter than this duration, we apply zero-padding at the
audio’s end. Crucially, all loss computations are restricted to
non-padded regions of the spectrograms.

B Speech Language Model
Now we provide more information about our speech lan-
guage model.

For the configuration of the LLM, we follow Qwen3
(Yang et al. 2025) without modifications. Besides, we set
both the group size and the number of previous token groups
provided to the flow matching network to 2. Regarding the
speech adaptor, it comprises two SwiGLU blocks with an
MLP ratio of 8

3 , where the input, intermediate, and output
dimensions are 128, 1152, and 2560 respectively. The total
parameter count amounts to approximately 19M.

The secondary flow matching model implements its ve-
locity network through a 4-layer diffusion transformer. This
architecture employs a hidden dimension of 1152 with 9
attention heads, incorporating Rotary Position Embedding
(RoPE) (Su et al. 2024) and SwiGLU blocks with an MLP
ratio of 8

3 . Following standard diffusion transformer designs
(Peebles and Xie 2023), we implement time embedding in-
jection through adaptive layer normalization and scaling lay-
ers. The complete diffusion transformer comprises approx-
imately 103M parameters, which is much smaller than the
LLM and only consumes less than 10% time during infer-
ence. Notably, we employ distinct linear projection layers
for three input components: previously grouped speech to-
kens, LLM latents, and noisy latents. These components are
concatenated in the specified sequence before being fed into
the transformer.

Noting that speech tokens are continuous 64-dimensional
vectors while text tokens are discrete indices, we design
a specialized method to enable parallel processing. Our
speech language model receives three input components: a
speech tensor, a text tensor, and their corresponding posi-
tional tensors. Although adjacent elements within speech or
text tensors may not correspond to neighboring positions in
the interleaved speech-text sequence, we strategically con-
catenate these elements to enhance parallel processing ef-
ficiency. The continuous speech tensor is projected to the
LLM’s latent dimension through a linear layer, while the
discrete text tensor is fed into the embedding layer. Utiliz-
ing the positional tensors for speech and text, we employ
PyTorch’s scatter function to generate interleaved speech-
text latent representations for LLM input, and then they are
transformed into latent features of the LLM. During train-
ing, based on predefined data types for each position, we
compute flow matching loss with the secondary diffusion
transformer for speech-target positions and standard cross-
entropy loss for text-target positions. Additionally, we incor-



porate a cross-entropy loss from the MLP classifier (which
determines output modality of our model) into the previous
two loss functions, scaled by a coefficient of 0.1.

C Evaluation
For discrete text data, the log-likelihood of individual data
samples can be readily computed in our Speech LM im-
plementation. In contrast, when handling continuous speech
data, we employ the instantaneous change of variables for-
mula from NeuralODE (Chen et al. 2018) to enable log-
likelihood computation with our flow matching model. This
mathematical foundation demonstrates how we can effec-
tively calculate likelihoods for continuous speech represen-
tations through differential equation-based transformations.

Theorem 1 (Instantaneous Change of Variables) Let xt

be a finite continuous random variable with probability den-
sity function p(xt, t) dependent on time t, where the tempo-
ral evolution of probability density is governed by the flow-
matching velocity ODE dxt

dt = v(xt, t). Assuming v is uni-
formly Lipschitz in x and continuous in t, then the probabil-
ity density function and velocity field satisfy the following
differential equation:

∂ log p(xt, t)

∂t
= −tr

(
∂v

∂xt
(xt, t)

)
(8)

For the proof of this theorem, please refer to (Chen et al.
2018). Using the autograd function provided by PyTorch, we
can efficiently compute gradients of scalar values. However,
in the instantaneous change of variable formula, computing
the trace of the Jacobian matrix for the velocity function at
different time points becomes computationally expensive, as
it would require enumerating each component of the vector
field v through autograd.

To address this, we employ unbiased Hutchinson’s trace
estimator (Hutchinson 1990) for efficient approximation.
Specifically, for a random vector ϵ satisfying E[ϵ] = 0
and E[ϵϵ⊤] = I, the trace of a matrix A can be esti-
mated through E[ϵ⊤Aϵ]. In our implementation, to esti-
mate tr

(
∂v
∂xt

(xt, t)
)

, we sample ϵ ∼ N(0, I) and compute

ϵ⊤ ∂
∂xt

(v(xt, t)
⊤ϵ). This approach leverages the efficiency

of scalar backward propagation in autograd while avoiding
explicit Jacobian computation.

To estimate the log-likelihood of a given data point at time
t = 1, we use Euler method to numerically solve the flow-
matching velocity ODE dxt

dt = v(xt, t) to obtain a discrete
trajectory approximation. At each discrete time point along
the trajectory, we estimate the log-likelihood change using
Hutchinson’s trace estimator, where multiple independent
Gaussian noise vectors ϵ are sampled simultaneously to re-
duce the estimator’s variance. For the initial log-likelihood
at t = 0, the standard Gaussian prior enables direct analyti-
cal computation. Summing the initial log-likelihood with the
accumulated estimated changes yields the final continuous
log-likelihood estimate for the input data.

Now that we have shown how to estimate the continuous
log-likelihood for standard flow matching models, since our

secondary model is a conditioned flow matching model, we
can simply pass the conditioning variables to the model and
estimate the likelihood in the same manner. We solve the
ODE with 40 discrete steps and use 20 independent standard
Gaussian variables to estimate the trace term at each discrete
time step in implementation.

It is worth noting that the discrete log-likelihood and con-
tinuous log-likelihood are not directly comparable, as the
former is based on probability values while the latter relies
on probability density functions. For both Topic-StoryCloze
and StoryCloze benchmarks, we evaluate our model using
three data types: speech-to-speech continuation (S), text-
to-speech continuation (T→S), and speech-to-text contin-
uation (S→T). When the output modality is text, we em-
ploy the discrete log-likelihood, whereas the continuous log-
likelihood is used for speech outputs. Additionally, since our
model employs an MLP classifier to predict the probability
of outputting either a text token or grouped speech tokens
from a LLM latent vector, we multiply these probability val-
ues by the discrete or continuous log-likelihood values to ob-
tain the final log-likelihood values for text tokens or grouped
speech tokens. Both metrics undergo standard normalization
by the number of tokens during evaluation, following estab-
lished practices in prior work (Nguyen et al. 2025; Hassid
et al. 2023).


